Issue |
A&A
Volume 685, May 2024
|
|
---|---|---|
Article Number | A155 | |
Number of page(s) | 18 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202348806 | |
Published online | 20 May 2024 |
Cosmic insights from galaxy clusters: Exploring magnification bias on sub-millimetre galaxies
1
Departamento de Física, Universidad de Oviedo, C. Federico García Lorca 18, 33007 Oviedo, Spain
e-mail: fernandezferrebeca@uniovi.es
2
Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), C. Independencia 13, 33004 Oviedo, Spain
3
SISSA, Via Bonomea 265, 34136 Trieste, Italy
4
IFPU – Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy
Received:
30
November
2023
Accepted:
16
February
2024
Context. Magnification bias, an observational effect of gravitational lensing in the weak regime, allows the cosmological model to be tested through angular correlations of sources at different redshifts. This effect has been observed in various contexts, particularly with sub-millimetre galaxies (SMGs), offering valuable astrophysical and cosmological insights.
Aims. The study aims to investigate the magnification bias effect exerted by galaxy clusters on SMGs and its implications for astrophysical and cosmological parameters within the Λ-CDM model.
Methods. Magnification bias was explored by quantifying the cross-correlation function, which we then utilised to derive constraints on cosmological and astrophysical parameters with a Markov chain Monte Carlo algorithm. Two distinct galaxy cluster samples were used to assess result robustness and understand the influence of sample characteristics.
Results. Cluster samples show higher cross-correlation values than galaxies, with an excess at larger scales suggesting contributions from additional large-scale structures. The parameters obtained, while consistent with those of galaxies, are less constrained due to broader redshift distributions and limited cluster statistics. Results align with weak lensing studies, hinting at slightly lower σ8 and Ωm values than Planck’s cosmic microwave background data, emphasising the need for enhanced precision and alternative low-redshift universe tests.
Conclusions. While this method yields constraints that are compatible with the Λ-CDM model, its limitations include broader redshift distributions and a limited number of lenses, resulting in less constrained parameters compared to previous galaxy studies. Nonetheless, our study underscores the potential of using galaxy clusters as lenses for magnification bias studies, capitalising on their elevated masses and thus providing a promising avenue to test current cosmology theories. Further progress can be made by expanding the lens sample size.
Key words: gravitational lensing: weak / methods: data analysis / galaxies: high-redshift / cosmological parameters / submillimeter: galaxies
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.