Issue |
A&A
Volume 683, March 2024
|
|
---|---|---|
Article Number | A57 | |
Number of page(s) | 14 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202347444 | |
Published online | 06 March 2024 |
Environmental dependence of AGN activity and star formation in galaxy clusters from Magneticum simulations
1
Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians-Universität München, Scheinerstr. 1, 81679 München, Germany
2
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
e-mail: gregor.rihtarsic@fmf.uni-lj.si
3
INAF – Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143 Trieste, Italy
4
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85741 Garching, Germany
Received:
12
July
2023
Accepted:
28
December
2023
Context. The environment inside and on the outskirts of galaxy clusters has a profound impact on the star formation rate and active galactic nucleus (AGN) activity in cluster galaxies. While the overall star formation and AGN suppression in the inner cluster regions has been thoroughly studied in the past, recent X-ray studies also indicate that conditions on the cluster outskirts may promote AGN activity.
Aims. We investigate how the environment and the properties of host galaxies impact the levels of AGN activity and star formation in galaxy clusters. We aim to identify significant trends in different galaxy populations and suggest possible explanations.
Methods. We studied galaxies with stellar mass log M*(M⊙) > 10.15 in galaxy clusters with mass M500 > 1013 M⊙ extracted from box2b (640 comoving Mpc h−1) of the Magneticum Pathfinder suite of cosmological hydrodynamical simulations at redshifts 0.25 and 0.90. We examined the influence of stellar mass, distance to the nearest neighbouring galaxy, cluster-centric radius, substructure membership, and large-scale surroundings on the fraction of galaxies hosting an AGN, star formation rate, and the ratio between star-forming and quiescent galaxies.
Results. We find that in low-mass galaxies, AGN activity and star formation are similarly affected by the environment and decline towards the cluster centre. In massive galaxies, the impact is different; star-formation level increases in the inner regions and peaks between 0.5 and 1 R500 with a rapid decline in the centre, whereas AGN activity declines in the inner regions and rapidly rises below R500 towards the centre. We suggest that this increase is a result of the larger black hole masses relative to stellar masses in the cluster centre. After disentangling the contributions of neighbouring cluster regions, we find an excess of AGN activity in massive galaxies on the cluster outskirts (∼3 R500). We also find that the local density, substructure membership, and stellar mass strongly influence star formation and AGN activity but verify that they cannot fully account for the observed radial trends.
Key words: methods: numerical / galaxies: active / galaxies: clusters: general / galaxies: interactions / galaxies: star formation / large-scale structure of Universe
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.