Issue |
A&A
Volume 682, February 2024
|
|
---|---|---|
Article Number | A126 | |
Number of page(s) | 13 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/202347936 | |
Published online | 12 February 2024 |
Abundance of strontium in the Galactic globular cluster 47 Tuc⋆
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio al. 3, Vilnius 10257, Lithuania
e-mail: edgaras.kolomiecas@ff.vu.lt
Received:
11
September
2023
Accepted:
24
November
2023
Aims. We have determined Sr abundance in a sample of 31 red giant branch stars located in the Galactic globular cluster 47 Tuc with the aim to identify potential differences in the Sr abundance between first population (1P, Na-poor) and second population (2P, Na-rich) stars.
Methods. We derived the Na and Sr abundances from the archival spectra obtained with the UVES spectrograph. To do this, we used 1D ATLAS9 model atmospheres and a 1D local thermodynamic equilibrium spectral synthesis method. Particular attention was paid to assessing the potential impact of CN line blending on the obtained Sr abundances. Furthermore, we evaluated the potential influence of convection on the Sr line formation by using 3D hydrodynamical model atmospheres computed with the CO5 BOLD code.
Results. Our results suggest a weak correlation between the abundances of Sr and Na. Together with a similar correlation between the abundances of Zr and Na determined in our previous study, our analysis of Sr suggests that polluters that have enriched 2P stars with light elements may have produced some s-process elements as well. The mean Sr abundance determined in 31 red giant branch stars of 47 Tuc is ⟨[Sr/Fe]⟩ = 0.18 ± 0.08 (the error denotes the standard deviation due to the star-to-star abundance scatter). This value is within the range of the Sr abundance variation that is observed in Galactic field stars of similar metallicity. The mean [Sr/Zr] abundance ratio in our sample stars suggests that the two s-process elements could have been synthesized by either low-mass asymptotic giant branch stars (M = 1 − 4 M⊙) or massive (M = 10 − 20 M⊙) fast-rotating (vrot = 200 − 300 km s−1) stars.
Key words: techniques: spectroscopic / stars: abundances / stars: late-type / globular clusters: individual: 47 Tuc
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.