Issue |
A&A
Volume 682, February 2024
|
|
---|---|---|
Article Number | A185 | |
Number of page(s) | 11 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/202347804 | |
Published online | 26 February 2024 |
Empirical instability strip for classical Cepheids
I. The Large Magellanic Cloud galaxy
1
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland
e-mail: fespinoza@camk.edu.pl
2
LESIA (UMR 8109), Observatoire de Paris, PSL, CNRS, UPMC, Univ. Paris-Diderot, 5 place Jules Janssen, 92195 Meudon, France
Received:
25
August
2023
Accepted:
24
November
2023
Context. The instability strip (IS) of classical Cepheids has been extensively studied theoretically. Comparing the theoretical IS edges with those obtained empirically, using the most recent Cepheids catalogs available, can provide us with insights into the physical processes that determine the position of the IS boundaries.
Aims. We aim to investigate the empirical positions of the IS of the classical Cepheids in the Large Magellanic Cloud (LMC), considering any effect that increases its width, to obtain intrinsic edges that can be compared with theoretical models.
Methods. We used data of classical fundamental-mode (F) and first-overtone (1O) LMC Cepheids from the OGLE-IV variable star catalog, together with a recent high-resolution reddening map from the literature. Our final sample includes 2058 F and 1387 1O Cepheids. We studied their position on the Hertzsprung-Russell diagram and determined the IS borders by tracing the edges of the color distribution along the strip.
Results. We obtained the blue and red edges of the IS in V- and I-photometric bands, in addition to log Teff and log L. The results obtained show a break located at the Cepheids’ period of about three days, which was not reported before. We compared our empirical borders with theoretical ones published in the literature, obtaining a good agreement for specific parameter sets.
Conclusions. The break in the IS borders is most likely explained by the depopulation of second- and third-crossing classical Cepheids in the faint part of the IS, since blue loops of evolutionary tracks in this mass range do not extend blueward enough to cross the IS at the LMC metallicity. Results from the comparison of our empirical borders with theoretical ones prove that our empirical IS is a useful tool for constraining theoretical models.
Key words: stars: evolution / stars: variables: Cepheids / Magellanic Clouds
© The Authors 2024
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.