Issue |
A&A
Volume 680, December 2023
|
|
---|---|---|
Article Number | A49 | |
Number of page(s) | 29 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202346774 | |
Published online | 12 December 2023 |
Tailoring galaxies: Size–luminosity–surface brightness relations of bulges and disks along the morphological sequence
Institut d’Astrophysique de Paris, CNRS, Sorbonne Université, 98 bis boulevard Arago, 75014 Paris, France
e-mail: louis.quilley@iap.fr; valerie.de_lapparent@iap.fr
Received:
28
April
2023
Accepted:
22
August
2023
Aims. We revisit the scaling relations between size, luminosity, and surface brightness as a function of morphology, for the bulge and disk components of the 3106 weakly inclined galaxies of the “Extraction de Formes Idéalisées de Galaxies en Imagerie” (EFIGI) sample, in the nearby Universe.
Methods. The luminosity profiles from the Sloan Digital Sky Survey (SDSS) gri images were modeled as the sum of a Sérsic (bulge) and an exponential (disk) component for cD, elliptical (E), lenticular, and spiral galaxies, or as a single Sérsic profile for cD, E, dE, and irregular (Im) galaxies, by controlled profile fitting with the SourceXtractor++ software.
Results. For the EFIGI sample, we remeasured the Kormendy (1977, ApJ, 218, 333) relation between effective surface brightness ⟨μ⟩e and effective radius Re of elliptical galaxies, and show that it is also valid for the bulges (or Sérsic components) of galaxy types Sb and earlier. In contrast, there is a progressive departure toward fainter and smaller bulges for later Hubble types, as well as with decreasing bulge-to-total ratios (B/T) and Sérsic indices. This depicts a continuous transition from pseudo-bulges to classical ones, which we suggest to occur for absolute g magnitudes Mg between −17.8 and −19.1. We also obtain partial agreement with the Binggeli et al. (1984, AJ, 89, 64) relations between effective radius and Mg (known as “size–luminosity” relations, in log–log scale) for E and dE galaxies. There is a convex size–luminosity relation for the bulges of all EFIGI types. Both ⟨μ⟩e − Re and Re − Mg scaling relations are projections of a plane in which bulges are located according to their value of B/T, which partly determines the morphological type. Analogous scaling relations were derived for the disks of lenticular and spiral types, and the irregulars. The curvature of the size–luminosity relation for disks is such that while they grow, they first brighten and then stabilize in surface brightness. Moreover, we obtain the unprecedented result that the effective radii of both the bulges and disks of lenticular and spiral galaxies increase as power laws of B/T, with a steeper increase for the bulges. Both bulges and disks of lenticular galaxies have a similar and largely steeper increase with B/T than those for spirals. These relations propagate into a single scaling relation for the disk-to-bulge ratio of effective radii across ∼2 orders of magnitude in B/T, and for all types. We provide the parameters of all of these relations that can be used to build realistic mock images of nearby galaxies. The new convex size–luminosity relations are more reliable estimates of bulge, disk, and galaxy sizes at all magnitudes in the nearby Universe.
Conclusions. This analysis describes the joint size and luminosity variations of bulges and disks along the Hubble sequence. The characteristics of the successive phases of disk and bulge size growth strengthen a picture of morphological evolution in which irregulars and late spirals merge to form earlier spirals, lenticulars, and eventually ellipticals.
Key words: galaxies: evolution / galaxies: bulges / galaxies: elliptical and lenticular / cD / galaxies: spiral / galaxies: structure
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.