Issue |
A&A
Volume 675, July 2023
|
|
---|---|---|
Article Number | A138 | |
Number of page(s) | 13 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202346056 | |
Published online | 11 July 2023 |
Constraining the cosmic-ray pressure in the inner Virgo Cluster using H.E.S.S. observations of M 87
1
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland
2
Max-Planck-Institut für Kernphysik, PO Box 103980 69029 Heidelberg, Germany
3
Yerevan State University, 1 Alek Manukyan St, Yerevan 0025, Armenia
4
Landessternwarte, Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany
5
Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands
6
University of Namibia, Department of Physics, Private Bag 13301, Windhoek 10005, Namibia
7
Centre for Space Research, North-West University, Potchefstroom 2520, South Africa
8
Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
9
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany
10
Université de Paris, CNRS, Astroparticule et Cosmologie, 10 Rue Alice Domon et Léonie Duquet, 75013 Paris, France
11
Department of Physics and Electrical Engineering, Linnaeus University, 351 95 Växjö, Sweden
12
Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany
13
Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, 72076 Tübingen, Germany
14
Laboratoire Univers et Théories, Observatoire de Paris, Université PSL, CNRS, Université de Paris, 5 Pl. Jules Janssen, 92190 Meudon, France
15
Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies, LPNHE, 4 Place Jussieu, 75252 Paris, France
16
IRFU, CEA, Université Paris-Saclay, Bât. 141, 91191 Gif-sur-Yvette, France
17
Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Nikolaus-Fiebiger-Str. 2, 91058 Erlangen, Germany
18
Astronomical Observatory, The University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland
19
Université Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules – IN2P3, 9 Chem. de Bellevue, 74000 Annecy, France
20
Instytut Fizyki Jdrowej PAN, ul. Radzikowskiego 152, 31-342 Kraków, Poland
21
Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany
22
School of Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg 2050, South Africa
23
University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
24
Aix Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
25
School of Science, Western Sydney University, Locked Bag 1797, Penrith South DC, NSW 2751, Australia
26
Laboratoire Leprince-Ringuet, École Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau, France
27
Université Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, 19 Chem. du Solarium, 33170 Gradignan, France
28
Obserwatorium Astronomiczne, Uniwersytet Jagielloński, ul. Orla 171, 30-244 Kraków, Poland
29
Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
30
Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland
31
Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, CC 72, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
32
School of Physical Sciences, University of Adelaide, N1.36, Engineering North, North Terrace Campus, Adelaide 5005, Australia
33
Leopold-Franzens-Universität Innsbruck, Institut für Astro- und Teilchenphysik, Technikerstraße 25, 6020 Innsbruck, Austria
34
Department of Physics and Astronomy, The University of Leicester, University Road, Leicester LE1 7RH, UK
35
GRAPPA, Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
36
Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan, Armenia
37
Department of Physics, Konan University, 8-9-1 Okamoto, Higashinada, Kobe, Hyogo 658-8501, Japan
38
Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8583, Japan
39
RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
40
Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
41
Department of Physics, University of the Free State, PO Box 339 Bloemfontein 9300, South Africa
Received:
1
February
2023
Accepted:
15
May
2023
The origin of the gamma-ray emission from M 87 is currently a matter of debate. This work aims to localize the very high-energy (VHE; 100 GeV – 100 TeV) gamma-ray emission from M 87 and probe a potential extended hadronic emission component in the inner Virgo Cluster. The search for a steady and extended gamma-ray signal around M 87 can constrain the cosmic-ray energy density and the pressure exerted by the cosmic rays onto the intracluster medium and allow us to investigate the role of cosmic rays in the active galactic nucleus feedback as a heating mechanism in the Virgo Cluster. The High Energy Stereoscopic System (H.E.S.S.) telescopes are sensitive to VHE gamma rays and have been used to observe M 87 since 2004. We utilized a Bayesian block analysis to identify M 87 emission states with H.E.S.S. observations from 2004 to 2021, dividing them into low, intermediate, and high states. Because of the causality argument, an extended (≳1 kpc) signal is allowed only in steady emission states. Hence, we fitted the morphology of the 120 h low-state data and find no significant gamma-ray extension. Therefore, we derive for the low state an upper limit of 58″(corresponding to ≈4.6 kpc) in the extension of a single-component morphological model described by a rotationally symmetric 2D Gaussian model at the 99.7% confidence level. Our results exclude the radio lobes (≈30 kpc) as the principal component of the VHE gamma-ray emission from the low state of M 87. The gamma-ray emission is compatible with a single emission region at the radio core of M 87. These results, with the help of two multiple-component models, constrain the maximum cosmic-ray to thermal pressure ratio to XCR, max. ≲ 0.32 and the total energy in cosmic-ray protons to UCR ≲ 5 × 1058 erg in the inner 20 kpc of the Virgo Cluster for an assumed cosmic-ray proton power-law distribution in momentum with spectral index αp = 2.1.
Key words: astroparticle physics / gamma rays: galaxies: clusters / galaxies: clusters: intracluster medium / radio continuum: galaxies
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.