Issue |
A&A
Volume 675, July 2023
|
|
---|---|---|
Article Number | A94 | |
Number of page(s) | 16 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202245780 | |
Published online | 04 July 2023 |
Swirls in the solar corona
1
Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
e-mail: breu@mps.mpg.de
2
School of Mathematics and Statistics, University of St. Andrews, St. Andrews, Fife, KY16 9SS
UK
3
School of Space Research, Kyung Hee University, Yongin, Gyeonggi, 446-701
Republic of Korea
Received:
23
December
2022
Accepted:
30
April
2023
Context. Vortex flows have been found in the photosphere, chromosphere, and low corona in observations and simulations. It has been suggested that vortices play an important role in channeling energy and plasma into the corona. However, the impact of vortex flows on the corona has not been studied directly in a realistic setup.
Aims. We investigate the role vortices play for coronal heating using high-resolution simulations of coronal loops. The vortices are not artificially driven and they arise, instead, self-consistently from magnetoconvection.
Methods. We performed 3D resistive (magnetohydrodynamic) MHD simulations with the MURaM code. Studying an isolated coronal loop in a Cartesian geometry allows us to resolve the structure of the loop interior. We conducted a statistical analysis to determine vortex properties as a function of height from the chromosphere into the corona.
Results. We find that the energy injected into the loop is generated by internal coherent motions within strong magnetic elements. A significant part of the resulting Poynting flux is channeled through the chromosphere in vortex tubes forming a magnetic connection between the photosphere and corona. Vortices can form contiguous structures that reach up to coronal heights, but in the corona itself, the vortex tubes get deformed and eventually lose their identity with increasing height. Vortices show increased upward directed Poynting flux and heating rate in both the chromosphere and corona, but their effect becomes less pronounced with increasing height.
Conclusions. While vortices play an important role for the energy transport and structuring in the chromosphere and low corona, their importance higher up in the atmosphere is less clear since the swirls are less distinguishable from their environment. Vortex tubes reaching the corona reveal a complex relationship with the coronal emission.
Key words: Sun: corona / Sun: magnetic fields / magnetohydrodynamics (MHD)
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model.
Open access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.