Issue |
A&A
Volume 675, July 2023
BeyondPlanck: end-to-end Bayesian analysis of Planck LFI
|
|
---|---|---|
Article Number | A14 | |
Number of page(s) | 18 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202243160 | |
Published online | 28 June 2023 |
BEYONDPLANCK
XIV. Polarized foreground emission between 30 and 70 GHz⋆
1
Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
e-mail: t.l.svalheim@astro.uio.no
2
Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, Milano, Italy
3
INAF/IASF Milano, Via E. Bassini 15, Milano, Italy
4
INFN, Sezione di Milano, Via Celoria 16, Milano, Italy
5
INAF – Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, Trieste, Italy
6
Planetek Hellas, Leoforos Kifisias 44, Marousi, 151 25
Greece
7
Department of Astrophysical Sciences, Princeton University, Princeton, NJ, 08544
USA
8
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, USA
9
Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, Finland
10
Helsinki Institute of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, Finland
11
Computational Cosmology Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
12
Haverford College Astronomy Department, 370 Lancaster Avenue, Haverford, PA, USA
13
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
14
Dipartimento di Fisica, Università degli Studi di Trieste, Via A. Valerio 2, Trieste, Italy
Received:
19
January
2022
Accepted:
21
February
2022
Using the Planck Low Frequency Instrument (LFI) and WMAP data within the global Bayesian BEYONDPLANCK framework, we constrained the polarized foreground emission between 30 and 70 GHz. We combined, for the first time, full-resolution Planck LFI time-ordered data with low-resolution WMAP sky maps at 33, 40, and 61 GHz. The spectral parameters were fit with a likelihood defined at the native resolution of each frequency channel. This analysis represents the first implementation of true multi-resolution component separation applied to CMB observations for both amplitude and spectral energy distribution (SED) parameters. For the synchrotron emission, we approximated the SED as a power-law in frequency and we find that the low signal-to-noise ratio of the current data strongly limits the number of free parameters that can be robustly constrained. We partitioned the sky into four large disjoint regions (High Latitude; Galactic Spur; Galactic Plane; and Galactic Center), each associated with its own power-law index. We find that the High Latitude region is prior-dominated, while the Galactic Center region is contaminated by residual instrumental systematics. The two remaining regions appear to be signal-dominated, and for these we derive spectral indices of βsSpur = −3.17 ± 0.06 and βsPlane = −3.03 ± 0.07, which is in good agreement with previous results. For the thermal dust emission, we assumed a modified blackbody model and we fit a single power-law index across the full sky. We find βd = 1.64 ± 0.03, which is slightly steeper than the value reported in Planck HFI data, but still statistically consistent at the 2σ confidence level.
Key words: cosmic background radiation
All data are released through the Planck Legacy Archive (https://pla.esac.esa.int/).
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.