Issue |
A&A
Volume 671, March 2023
|
|
---|---|---|
Article Number | A95 | |
Number of page(s) | 11 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/202245643 | |
Published online | 13 March 2023 |
Gas-phase formation and spectroscopic characterization of the disubstituted cyclopropenylidenes c-C3(C2H)2, c-C3(CN)2, and c-C3(C2H)(CN)★
Department of Chemistry and Biochemistry, University of Mississippi, University,
Mississippi
38677-1848, USA
e-mail: r410@olemiss.edu@
Received:
7
December
2022
Accepted:
17
January
2023
Aims. The detection of c-C3HC2H and possible future detection of c-C3HCN provide new molecules for reaction chemistry in the dense interstellar medium (ISM) where R-C2H and R-CN species are prevalent. Determination of chemically viable c-C3HC2H and c-C3HCN derivatives and their prominent spectral features can accelerate potential astrophysical detection of this chemical family. This work characterizes three such derivatives: c-C3(C2H)2, c-C3(CN)2, and c-C3(C2H)(CN).
Methods. Interstellar reaction pathways of small carbonaceous species are well replicated through quantum chemical means. Highly accurate cc-pVXZ-F12/CCSD(T)-F12 (X = D,T) calculations generate the energetics of chemical formation pathways as well as the basis for quartic force field and second-order vibrational perturbation theory rovibrational analysis of the vibrational frequencies and rotational constants of the molecules under study.
Results. The formation of c-C3(C2H)2 is as thermodynamically and, likely, as stepwise favorable as the formation of c-C3HC2H, rendering its detectability to be mostly dependent on the concentrations of the reactants. Both c-C3(C2H)2 and c-C3(C2H)(CN) will be detectable through radioastronomical observation with large dipole moments of 2.84 D and 4.26 D, respectively, while c-C3(CN)2 has an exceedingly small and likely unobservable dipole moment of 0.08 D. The most intense frequency for c-C3(C2H)2 is v2 at 3316.9 cm–1 (3.01 μm), with an intensity of 140 km mol–1. The mixed-substituent molecule c-C3(C2H)(CN) has one frequency with a large intensity, v1, at 3321.0 cm–1 (3.01 μm), with an intensity of 82 km mol–1. The molecule c-C3(CN)2 lacks intense vibrational frequencies within the range that current instrumentation can readily observe.
Conclusions. Both c-C3(C2H)2 and c-C3(C2H)(CN) are viable candidates for astrophysical observation, with favorable reaction profiles and spectral data produced herein, but c-C3(CN)2 will not be directly observable through any currently available remote sensing means, even if it forms in large abundances.
Key words: astrochemistry / ISM: molecules / infrared: ISM / molecular processes
Additional data obtained from spectroscopic analysis alongside structural information for all molecules can be found at https://egrove.olemiss.edu/chem_facpubs/33
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.