Issue |
A&A
Volume 670, February 2023
|
|
---|---|---|
Article Number | A24 | |
Number of page(s) | 30 | |
Section | Stellar atmospheres | |
DOI | https://doi.org/10.1051/0004-6361/202244223 | |
Published online | 01 February 2023 |
Connecting photometric and spectroscopic granulation signals with CHEOPS and ESPRESSO★
1
Aix-Marseille Univ, CNRS, CNES, LAM,
38 rue Frédéric Joliot-Curie,
13388
Marseille, France
e-mail: sophia.sulis@lam.fr
2
Observatoire Astronomique de l’Université de Genève,
Chemin Pegasi 51,
1290
Versoix, Switzerland
3
Centre for Exoplanets and Habitability, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL, UK
4
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL, UK
5
Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University,
Ny Munkegade 120,
8000
Aarhus C, Denmark
6
Université Nice Sophia Antipolis, Observatoire de la Côte d’Azur, Département Cassiopée CNRS/UMR 6202,
BP 4229,
06304
Nice, France
7
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
19C Allée du Six-Août
4000
Liège, Belgium
8
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews,
North Haugh,
St Andrews
KY16 9SS, UK
9
Astrophysics Group, Keele University,
Staffordshire,
ST5 5BG, UK
10
Physikalisches Institut, University of Bern,
Sidlerstrasse 5,
3012
Bern, Switzerland
11
INAF, Osservatorio Astrofisico di Catania,
Via S. Sofia 78,
95123
Catania, Italy
12
INAF, Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova, Italy
13
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstrasse 6,
8042
Graz, Austria
14
Leiden Observatory, University of Leiden,
PO Box 9513,
2300 RA
Leiden, The Netherlands
15
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory,
439 92
Onsala, Sweden
16
Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, CAUP, Rua das Estrelas,
4150-762
Porto, Portugal
17
Instituto de Astrofisica de Canarias,
38200
La Laguna, Tenerife, Spain
18
Departamento de Astrofisica, Universidad de La Laguna,
38206
La Laguna, Tenerife, Spain
19
Institut de Ciencies de l’Espai (ICE, CSIC),
Campus UAB, Can Magrans s/n,
08193
Bellaterra, Spain
20
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona, Spain
21
Admatis,
5. Kandó Kálmán Street,
3534
Miskolc, Hungary
22
Depto. de Astrofisica, Centro de Astrobiologia (CSIC-INTA),
ESAC campus,
28692
Villanueva de la Cañada (Madrid), Spain
23
Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto,
Rua do Campo Alegre,
4169-007
Porto, Portugal
24
Center for Space and Habitability, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern, Switzerland
25
Université Grenoble Alpes, CNRS, IPAG,
38000
Grenoble, France
26
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm, Sweden
27
Center for Space and Habitability,
Gesellsschaftstrasse 6,
3012
Bern, Switzerland
28
Institute of Planetary Research, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
29
Université de Paris, Institut de physique du globe de Paris, CNRS,
75005
Paris, France
30
ESTEC, European Space Agency,
2201AZ
Noordwijk, The Netherlands
31
Centre for Mathematical Sciences, Lund University,
Box 118,
221 00
Lund, Sweden
32
Astrobiology Research Unit, Université de Liège,
19C Allée du Six-Août,
4000
Liège, Belgium
33
Dipartimento di Fisica, Universita degli Studi di Torino,
via Pietro Giuria 1,
10125
Torino, Italy
34
University of Vienna, Department of Astrophysics,
Türkenschanzstrasse 17,
1180
Vienna, Austria
35
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL, UK
36
Science and Operations Department – Science Division (SCI-SC), Directorate of Science, European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),
Keplerlaan 1,
2201-AZ
Noordwijk, The Netherlands
37
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
1121
Budapest,
Konkoly Thege Miklós út 15-17, Hungary
38
ELTE Eötvös Loránd University, Institute of Physics,
Pázmány Péter sétány 1/A,
1117
Budapest, Hungary
39
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris, France
40
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie,
98bis Bd Arago,
75014
Paris, France
41
Department of Astrophysics, University of Vienna,
Tuerkenschanzstrasse 17,
1180
Vienna, Austria
42
Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
43
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita degli Studi di Padova,
Vicolo dell’Osservatorio 3,
35122
Padova, Italy
44
ETH Zurich, Department of Physics,
Wolfgang-Pauli-Strasse 2,
8093
Zurich, Switzerland
45
Cavendish Laboratory,
JJ Thomson Avenue,
Cambridge
CB3 0HE, UK
46
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin,
Hardenbergstr. 36,
10623
Berlin, Germany
47
Institut für Geologische Wissenschaften, Freie Universität Berlin,
12249
Berlin, Germany
48
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
49
MTA-ELTE Exoplanet Research Group,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
50
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge,
CB3 0HA, UK
Received:
8
June
2022
Accepted:
24
November
2022
Context. Stellar granulation generates fluctuations in photometric and spectroscopic data whose properties depend on the stellar type, composition, and evolutionary state. Characterizing granulation is key for understanding stellar atmospheres and detecting planets.
Aims. We aim to detect the signatures of stellar granulation, link spectroscopic and photometric signatures of convection for main-sequence stars, and test predictions from 3D hydrodynamic models.
Methods. For the first time, we observed two bright stars (Teff = 5833 and 6205 K) with high-precision observations taken simultaneously with CHEOPS and ESPRESSO. We analyzed the properties of the stellar granulation signal in each individual dataset. We compared them to Kepler observations and 3D hydrodynamic models. While isolating the granulation-induced changes by attenuating and filtering the p-mode oscillation signals, we studied the relationship between photometric and spectroscopic observables.
Results. The signature of stellar granulation is detected and precisely characterized for the hotter F star in the CHEOPS and ESPRESSO observations. For the cooler G star, we obtain a clear detection in the CHEOPS dataset only. The TESS observations are blind to this stellar signal. Based on CHEOPS observations, we show that the inferred properties of stellar granulation are in agreement with both Kepler observations and hydrodynamic models. Comparing their periodograms, we observe a strong link between spectroscopic and photometric observables. Correlations of this stellar signal in the time domain (flux versus radial velocities, RV) and with specific spectroscopic observables (shape of the cross-correlation functions) are however difficult to isolate due to S/N dependent variations.
Conclusions. In the context of the upcoming PLATO mission and the extreme precision RV surveys, a thorough understanding of the properties of the stellar granulation signal is needed. The CHEOPS and ESPRESSO observations pave the way for detailed analyses of this stellar process.
Key words: methods: data analysis / Sun: granulation / stars: atmospheres / techniques: photometric / techniques: radial velocities
Full Table F.1 and a copy of the data are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/670/A24
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.