Issue |
A&A
Volume 670, February 2023
|
|
---|---|---|
Article Number | A31 | |
Number of page(s) | 12 | |
Section | The Sun and the Heliosphere | |
DOI | https://doi.org/10.1051/0004-6361/202142996 | |
Published online | 01 February 2023 |
Magnetic field amplification and structure formation by the Rayleigh-Taylor instability
1
Centre for mathematical Plasma Astrophysics, KU Leuven, 3001 Leuven, Belgium
e-mail: beatriceannemone.popescubraileanu@kuleuven.be
2
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain
3
Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain
4
National Science Foundation, Alexandria, VA 22306, USA
Received:
23
December
2021
Accepted:
15
December
2022
We report our results from a set of high-resolution, two-fluid, non-linear simulations of the magnetized Rayleigh Taylor instability (RTI) at the interface between a solar prominence and the corona. These data follow results reported earlier on linear and early non-linear RTI dynamics in this environment. This paper is focused on the generation and amplification of magnetic structures by RTI. The simulations use a two-fluid model that includes collisions between neutrals and charges, including ionization and recombination, energy and momentum transfer, and frictional heating. The 2.5D magnetized RTI simulations demonstrate that in a fully developed state of RTI, a large fraction of the gravitational energy of a prominence thread can be converted into quasi-turbulent energy of the magnetic field. The RTI magnetic energy generation is further accompanied by magnetic and plasma density structure formation, including dynamic formation, break-up, and merging of current sheets and plasmoid sub-structures. The flow decoupling between neutrals and charges, as well as ionization and recombination reactions, are shown to have significant impact on the structure formation in a magnetized RTI.
Key words: magnetic reconnection / Sun: magnetic fields / Sun: filaments, prominences / instabilities
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.