Issue |
A&A
Volume 656, December 2021
|
|
---|---|---|
Article Number | A61 | |
Number of page(s) | 38 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/202141927 | |
Published online | 03 December 2021 |
Nebular phase properties of supernova Ibc from He-star explosions⋆
1
Institut d’Astrophysique de Paris, CNRS-Sorbonne Université, 98 bis boulevard Arago, 75014 Paris, France
e-mail: dessart@iap.fr
2
Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260, USA
3
Department of Astronomy, Ohio State University, Columbus, OH 43210, USA
4
Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA
5
Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany
Received:
1
August
2021
Accepted:
24
September
2021
Following our recent work on Type II supernovae (SNe), we present a set of 1D nonlocal thermodynamic equilibrium radiative transfer calculations for nebular-phase Type Ibc SNe starting from state-of-the-art explosion models with detailed nucleosynthesis. Our grid of progenitor models is derived from He stars that were subsequently evolved under the influence of wind mass loss. These He stars, which most likely form through binary mass exchange, synthesize less oxygen than their single-star counterparts with the same zero-age main sequence (ZAMS) mass. This reduction is greater in He-star models evolved with an enhanced mass loss rate. We obtain a wide range of spectral properties at 200 d. In models from He stars with an initial mass > 6 M⊙, the [O I] λλ 6300, 6364 is of a comparable or greater strength than [Ca II] λλ 7291, 7323 – the strength of [O I] λλ 6300, 6364 increases with the He-star initial mass. In contrast, models from lower mass He stars exhibit a weak [O I] λλ 6300, 6364, strong [Ca II] λλ 7291, 7323, and also strong N II lines and Fe II emission below 5500 Å. The ejecta density, which is modulated by the ejecta mass, the explosion energy, and clumping, has a critical impact on gas ionization, line cooling, and spectral properties. We note that Fe II dominates the emission below 5500 Å and is stronger at earlier nebular epochs. It ebbs as the SN ages, while the fractional flux in [O I] λλ 6300, 6364 and [Ca II] λλ 7291, 7323 increases with a similar rate as the ejecta recombine. Although the results depend on the adopted wind mass loss rate and pre-SN mass, we find that He-stars of 6–8 M⊙ initially (ZAMS mass of 23–28 M⊙) match the properties of standard SNe Ibc adequately. This finding agrees with the offset in progenitor masses inferred from the environments of SNe Ibc relative to SNe II. Our results for less massive He stars are more perplexing since the predicted spectra are not seen in nature. They may be missed by current surveys or associated with Type Ibn SNe in which interaction power dominates over decay power.
Key words: radiative transfer / stars: evolution / supernovae: general / binaries: general
Tables A.3–A.23 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/656/A61
© L. Dessart et al. 2021
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.