Issue |
A&A
Volume 654, October 2021
|
|
---|---|---|
Article Number | A162 | |
Number of page(s) | 18 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/202141448 | |
Published online | 27 October 2021 |
Quasi-universality of the magnetic deformation of neutron stars in general relativity and beyond
1
Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
2
INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
e-mail: jacopo.soldateschi@inaf.it; niccolo.bucciantini@inaf.it
3
INFN – Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
Received:
1
June
2021
Accepted:
19
August
2021
Neutron stars are known to host extremely powerful magnetic fields. Among its effects, one of the consequences of harbouring such fields is the deformation of the neutron star structure, leading, together with rotation, to the emission of continuous gravitational waves. On the one hand, the details of their internal magnetic fields are mostly unknown. Likewise, their internal structure, encoded by the equation of state, is highly uncertain. Here, we present a study of axisymmetric models of isolated magnetised neutron stars for various realistic equations of state considered viable by observations and nuclear physics constraints. We show that it is possible to find simple relations between the magnetic deformation of a neutron star, its Komar mass, and its circumferential radius in the case of purely poloidal and purely toroidal magnetic configurations that satisfy the criterion for equilibrium in the Bernoulli formalism. Such relations are quasi-universal, meaning that they are mostly independent from the equation of state of the neutron star. Thanks to their formulation in terms of potentially observable quantities, as we discuss, our results could help to constrain the magnetic properties of the neutron star interior and to better assess the detectability of continuous gravitational waves by isolated neutron stars, without knowing their equation of state. Our results are derived both in general relativity and in scalar-tensor theories (one of the most promising extensions of general relativity), in this case by also considering the scalar charge. We show that even in this case, general relations that account for deviations from general relativity still hold, which could potentially be used to set constraints on the gravitational theory.
Key words: gravitation / stars: magnetic field / stars: neutron / magnetohydrodynamics (MHD) / methods: numerical / relativistic processes
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.