Issue |
A&A
Volume 647, March 2021
|
|
---|---|---|
Article Number | A163 | |
Number of page(s) | 19 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202039687 | |
Published online | 29 March 2021 |
VHE gamma-ray detection of FSRQ QSO B1420+326 and modeling of its enhanced broadband state in 2020
1
Instituto de Astrofísica de Canarias and Dpto. de Astrofísica, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
2
Università di Udine and INFN Trieste, 33100 Udine, Italy
3
National Institute for Astrophysics (INAF), 00136 Rome, Italy
4
ETH Zürich, 8093 Zürich, Switzerland
5
Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), 08193 Bellaterra, Barcelona, Spain
6
Japanese MAGIC Group: Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa 277-8582, Chiba, Japan
7
Technische Universität Dortmund, 44221 Dortmund, Germany
8
Croatian MAGIC Group: University of Zagreb, Faculty of Electrical Engineering and Computing (FER), 10000 Zagreb, Croatia
9
IPARCOS Institute and EMFTEL Department, Universidad Complutense de Madrid, 28040 Madrid, Spain
10
Centro Brasileiro de Pesquisas Físicas (CBPF), 22290-180 URCA, Rio de Janeiro, RJ, Brazil
11
University of Lodz, Faculty of Physics and Applied Informatics, Department of Astrophysics, 90-236 Lodz, Poland
12
Università di Siena and INFN Pisa, 53100 Siena, Italy
13
Deutsches Elektronen-Synchrotron (DESY), 15738 Zeuthen, Germany
14
Università di Padova and INFN, 35131 Padova, Italy
15
INFN MAGIC Group: INFN Sezione di Torino and Università degli Studi di Torino, 10125 Torino, Italy
16
Max-Planck-Institut für Physik, 80805 München, Germany
17
Università di Pisa and INFN Pisa, 56126 Pisa, Italy
18
Universitat de Barcelona, ICCUB, IEEC-UB, 08028 Barcelona, Spain
19
Armenian MAGIC Group: A. Alikhanyan National Science Laboratory, Yerevan, Armenia
20
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040 Madrid, Spain
21
INFN MAGIC Group: INFN Sezione di Bari and Dipartimento Interateneo di Fisica dell’Università e del Politecnico di Bari, 70125 Bari, Italy
22
Croatian MAGIC Group: University of Rijeka, Department of Physics, 51000 Rijeka, Croatia
23
Universität Würzburg, 97074 Würzburg, Germany
24
Finnish MAGIC Group: Finnish Centre for Astronomy with ESO, University of Turku, 20014 Turku, Finland
25
Departament de Física, and CERES-IEEC, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
26
Armenian MAGIC Group: ICRANet-Armenia at NAS RA, Yerevan, Armenia
27
Croatian MAGIC Group: University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), 21000 Split, Croatia
28
Croatian MAGIC Group: Josip Juraj Strossmayer University of Osijek, Department of Physics, 31000 Osijek, Croatia
29
Japanese MAGIC Group: Department of Physics, Kyoto University, 606-8502 Kyoto, Japan
30
Japanese MAGIC Group: Department of Physics, Tokai University, Hiratsuka 259-1292, Kanagawa, Japan
31
Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Salt Lake, Sector-1, Kolkata 700064, India
32
Inst. for Nucl. Research and Nucl. Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
33
Finnish MAGIC Group: Astronomy Research Unit, University of Oulu, 90014 Oulu, Finland
34
Croatian MAGIC Group: Ruđer Bošković Institute, 10000 Zagreb, Croatia
35
INFN MAGIC Group: INFN Sezione di Perugia, 06123 Perugia, Italy
36
INFN MAGIC Group: INFN Roma Tor Vergata, 00133 Roma, Italy
37
Now at University of Innsbruck, Innsbruck, Austria
38
Also at Port d’Informació Científica (PIC), 08193 Bellaterra, Barcelona, Spain
39
Also at Dipartimento di Fisica, Università di Trieste, 34127 Trieste, Italy
40
Max-Planck-Institut für Physik, 80805 München, Germany
41
Also at INAF Trieste and Dept. of Physics and Astronomy, University of Bologna, Bologna, Italy
42
Japanese MAGIC Group: Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa 277-8582, Chiba, Japan
43
ASI Space Science Data Center, Via del Politecnico, snc., 00133 Rome, Italy
44
INFN – Roma Tor Vergata, Via della Ricerca Scientifica, 1., 00133 Rome, Italy
45
INAF – IRA Bologna, Via P. Gobetti 101, 40129 Bologna, Italy
46
Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, 06123 Perugia, Italy
47
Naval Research Laboratory, Washington, DC 20375, USA
48
INAF – Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
49
Physical Research Laboratory, Ahmedabad, India
50
Institute of Astronomy and NAO, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria
51
Department of Astronomy, Faculty of Physics, University of Sofia, 1164 Sofia, Bulgaria
52
Università di Siena, 53100 Siena, Italy
53
Instituto Nacional de Astrofisica, Optica & Electronics Tonantzintla, Puebla, Mexico
54
Aalto University Metsähovi Radio Observatory, Metsähovintie 114, 02540 Kylmälä, Finland
55
Aalto University Department of Electronics and Nanoengineering, PO Box 15500, 00076 Aalto, Finland
56
Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vesilinnantie 5, 20014 Turku, Finland
57
Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA
58
Astronomical Institute, St. Petersburg University, Universitetskij Pr. 28, Petrodvorets 198504, St. Petersburg, Russia
59
Pulkovo Observatory, St. Petersburg, Russia
60
Crimean Astrophysical Observatory, Crimea
61
Owens Valley Radio Observatory, California Institute of Technology, Pasadena, CA 91125, USA
62
Institute of Astrophysics, Foundation for Research and Technology-Hellas, 71110 Heraklion, Greece
63
Department of Physics, Univ. of Crete, 70013 Heraklion, Greece
64
Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile
65
CePIA, Departamento de Astronomía, Universidad de Concepción, Concepción, Chile
Received:
15
October
2020
Accepted:
18
December
2020
Context. QSO B1420+326 is a blazar classified as a flat-spectrum radio quasar (FSRQ). At the beginning of the year 2020, it was found to be in an enhanced flux state and an extensive multiwavelength campaign allowed us to trace the evolution of the flare.
Aims. We search for very high-energy (VHE) gamma-ray emission from QSO B1420+326 during this flaring state. We aim to characterize and model the broadband emission of the source over different phases of the flare.
Methods. The source was observed with a number of instruments in radio, near-infrared, optical (including polarimetry and spectroscopy), ultraviolet, X-ray, and gamma-ray bands. We use dedicated optical spectroscopy results to estimate the accretion disk and the dust torus luminosity. We performed spectral energy distribution modeling in the framework of combined synchrotron-self-Compton and external Compton scenario in which the electron energy distribution is partially determined from acceleration and cooling processes.
Results. During the enhanced state, the flux of both SED components of QSO B1420+326 drastically increased and the peaks were shifted to higher energies. Follow-up observations with the MAGIC telescopes led to the detection of VHE gamma-ray emission from this source, making it one of only a handful of FSRQs known in this energy range. Modeling allows us to constrain the evolution of the magnetic field and electron energy distribution in the emission region. The gamma-ray flare was accompanied by a rotation of the optical polarization vector during a low -polarization state. Also, a new superluminal radio knot contemporaneously appeared in the radio image of the jet. The optical spectroscopy shows a prominent FeII bump with flux evolving together with the continuum emission and a MgII line with varying equivalent width.
Key words: gamma rays: galaxies / galaxies: jets / radiation mechanisms: non-thermal / quasars: individual: QSO B1420+326
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.