Issue |
A&A
Volume 647, March 2021
|
|
---|---|---|
Article Number | A29 | |
Number of page(s) | 16 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202039338 | |
Published online | 03 March 2021 |
Polytropic spheres modelling dark matter haloes of dwarf galaxies
Research Centre for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezručovo nám. 13, 746 01 Opava, Czech Republic
e-mail: jan.novotny@physics.slu.cz
Received:
4
September
2020
Accepted:
23
December
2020
Context. Dwarf galaxies and their dark matter (DM) haloes have velocity curves of a different character than those in large galaxies. These velocity curves are modelled by a simple pseudo-isothermal model containing only two parameters, which do not give us insight into the physics of the DM halo.
Aims. We seek to obtain some insight into the physical conditions in DM haloes of dwarf galaxies by using a simple physically based model of DM haloes.
Methods. To treat the diversity of the dwarf galaxy velocity profiles in a unifying framework, we applied polytropic spheres characterised by the polytropic index n and the relativistic parameter σ as a model of dwarf-galaxy DM haloes and matched the velocity of circular geodesics of the polytropes to the velocity curves observed in the dwarf galaxies from the LITTLE THINGS ensemble.
Results. We introduce three classes of the LITTLE THINGS dwarf galaxies in relation to the polytrope models due to the different character of the velocity profile. The first class corresponds to polytropes that have n < 1 with linearly increasing velocity along the whole profile, the second class has 1 < n < 2 and the velocity profile becomes flat in the external region, the third class has n > 2, and the velocity profile reaches a maximum and demonstrates a decline in the external region. The σ parameter has to be strongly non-relativistic (σ < 10−8) for all dwarf galaxy models; this parameter varies for the models of each class, but these variations have negligible influence on the character of the velocity profile.
Conclusions. Our results indicate a possibility that at least two different kinds of DM are behind the composition of DM haloes. The matches of the observational velocity curves are of the same quality as those obtained by the pseudo-isothermal, core-like models of dwarf galaxy DM haloes.
Key words: dark matter / galaxies: halos / stars: kinematics and dynamics / galaxies: dwarf
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.