Issue |
A&A
Volume 645, January 2021
|
|
---|---|---|
Article Number | A33 | |
Number of page(s) | 21 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202039057 | |
Published online | 24 December 2020 |
The WISSH quasars project
IX. Cold gas content and environment of luminous QSOs at z ∼ 2.4–4.7
1
INAF – Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, 34143 Trieste, Italy
e-mail: manuela.bischetti@inaf.it
2
INAF – Osservatorio Astronomico di Roma, Via Frascati 33, 00078 Monte Porzio Catone, Italy
3
Dipartimento di Matematica e Fisica, Universitá Roma Tre, Via della Vasca Navale 84, 00146 Roma, Italy
4
Instituto de Astrofísica de Andalucía (IAA, CSIC), Glorieta de las Astronomía, s/n, 18008 Granada, Spain
5
Departamento de Física Teorica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
6
European Southern Observatory (ESO), Alonso de Córdova 3107, Vitacura, Casilla, 19001 Santiago de Chile, Chile
7
Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Magrans, 08193 Barcelona, Spain
8
Instituto de Astrofísica, Pontificia Universidad Católica de Chile, Avda Vicuna Mackenna 4860, 8970117 Macul, Santiago, Chile
9
Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
10
INAF – Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, 00133 Roma, Italy
11
Dpto. de Ciencias Fisicas, Universidad Andres Bello, Campus La Casona, Fernandez Concha 700, 7500912 Santiago, Chile
12
Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Universitá di Bologna, Via Gobetti 93/2, 40129 Bologna, Italy
13
INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Gobetti 93/3, 40129 Bologna, Italy
14
Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
15
INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 2, 50125 Firenze, Italy
16
Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
17
Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE, UK
18
Dipartimento di Fisica e Astronomia, Universitá degli Studi di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy
19
INAF – Padova Astronomical Observatory, Vicolo dell’Osservatorio 5, 35122 Padova, Italy
20
Instituto de Astrofísica e Ciências do Espa, Universidade de Lisboa, OAL, Tapada da Ajuda, 1349-018 Lisboa, Portugal
21
Centro de Astrobiología (CAB, CSIC-INTA), Dpto. de Astrofísica, Ctra de Ajalvir km 4, 28850 Torrejón de Ardoz, Madrid, Spain
22
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
23
INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, Via A. Corti 12, 20133 Milano, Italy
Received:
29
July
2020
Accepted:
10
October
2020
Context. Sources at the brightest end of the quasi-stellar object (QSO) luminosity function, during the peak epoch in the history of star formation and black hole accretion (z ∼ 2−4, often referred to as “Cosmic noon”) are privileged sites to study the cycle of feeding & feedback processes in massive galaxies.
Aims. We aim to perform the first systematic study of cold gas properties in the most luminous QSOs, by characterising their host-galaxies and environment. These targets exhibit indeed widespread evidence of outflows at nuclear and galactic scales.
Methods. We analyse ALMA, NOEMA and JVLA observations of the far-infrared continuum, CO and [CII] emission lines in eight QSOs (bolometric luminosity LBol ≳ 3 × 1047 erg s−1) from the WISE-SDSS selected hyper-luminous (WISSH) QSOs sample at z ∼ 2.4−4.7.
Results. We report a 100% emission line detection rate and a 80% detection rate in continuum emission, and we find CO emission to be consistent with the steepest CO ladders observed so far. Sub-millimetre data reveal presence of (one or more) bright companion galaxies around ∼80% of WISSH QSOs, at projected distances of ∼6−130 kpc. We observe a variety of sizes for the molecular gas reservoirs (∼1.7−10 kpc), mostly associated with rotating disks with disturbed kinematics. WISSH QSOs typically show lower CO luminosity and higher star formation efficiency than infrared matched, z ∼ 0−3 main-sequence galaxies, implying that, given the observed SFR ∼170−1100 M⊙ yr−1, molecular gas is converted into stars in ≲50 Myr. Most targets show extreme dynamical to black-hole mass ratios Mdyn/MBH ∼ 3−10, two orders of magnitude smaller than local relations. The molecular gas fraction in the host-galaxies of WISSH is lower by a factor of ∼10−100 than in star forming galaxies with similar M*.
Conclusions. Our analysis reveals that hyper-luminous QSOs at Cosmic noon undergo an intense growth phase of both the central super-massive black hole and of the host-galaxy. These systems pinpoint the high-density sites where giant galaxies assemble, where we show that mergers play a major role in the build-up of the final host-galaxy mass. We suggest that the observed low molecular gas fraction and short depletion timescale are due to AGN feedback, whose presence is indicated by fast AGN-driven ionised outflows in all our targets.
Key words: galaxies: high-redshift / galaxies: ISM / techniques: interferometric / quasars: supermassive black holes / submillimeter: galaxies / quasars: emission lines
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.