Issue |
A&A
Volume 640, August 2020
|
|
---|---|---|
Article Number | A11 | |
Number of page(s) | 12 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202038432 | |
Published online | 31 July 2020 |
The future large obliquity of Jupiter
1
IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, Université de Lille,
75014
Paris,
France
e-mail: melaine.saillenfest@obspm.fr
2
Department of Mathematics, University of Pisa,
Largo Bruno Pontecorvo 5,
56127
Pisa,
Italy
Received:
18
May
2020
Accepted:
3
June
2020
Aims. We aim to determine whether Jupiter’s obliquity is bound to remain exceptionally small in the Solar System, or if it could grow in the future and reach values comparable to those of the other giant planets.
Methods. The spin-axis of Jupiter is subject to the gravitational torques from its regular satellites and from the Sun. These torques evolve over time due to the long-term variations of its orbit and to the migration of its satellites. With numerical simulations, we explore the future evolution of Jupiter’s spin axis for different values of its moment of inertia and for different migration rates of its satellites. Analytical formulas show the location and properties of all relevant resonances.
Results. Because of the migration of the Galilean satellites, Jupiter’s obliquity is currently increasing, as it adiabatically follows the drift of a secular spin-orbit resonance with the nodal precession mode of Uranus. Using the current estimates of the migration rate of the satellites, the obliquity of Jupiter can reach values ranging from 6° to 37° after 5 Gyr from now, according to the precise value of its polar moment of inertia. A faster migration for the satellites would produce a larger increase in obliquity, as long as the drift remains adiabatic.
Conclusions. Despite its peculiarly small current value, the obliquity of Jupiter is no different from other obliquities in the Solar System: It is equally sensitive to secular spin-orbit resonances and it will probably reach comparable values in the future.
Key words: planets and satellites: dynamical evolution and stability / planets and satellites: fundamental parameters
© M. Saillenfest et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.