Issue |
A&A
Volume 640, August 2020
|
|
---|---|---|
Article Number | A40 | |
Number of page(s) | 23 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/202037750 | |
Published online | 10 August 2020 |
A plethora of new, magnetic chemically peculiar stars from LAMOST DR4⋆
1
Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne e.V. (BAV), 12169 Berlin, Germany
e-mail: ernham@rz-online.de
2
American Association of Variable Star Observers (AAVSO), 49 Bay State Rd, Cambridge, MA 02138, USA
3
Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
Received:
16
February
2020
Accepted:
4
May
2020
Context. Magnetic chemically peculiar (mCP) stars are important to astrophysics because their complex atmospheres lend themselves perfectly to the investigation of the interplay between such diverse phenomena as atomic diffusion, magnetic fields, and stellar rotation. The most up-to-date catalogue of these objects was published a decade ago. Since then, no large scale spectroscopic surveys targeting this group of objects have been carried out. An increased sample size of mCP stars, however, is important for statistical studies.
Aims. The present work is aimed at identifying new mCP stars using spectra collected by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST).
Methods. Suitable candidates were selected by searching LAMOST DR4 spectra for the presence of the characteristic 5200 Å flux depression. Spectral classification was carried out with a modified version of the MKCLASS code and the accuracy of the classifications was estimated by comparison with results from manual classification and the literature. Using parallax data and photometry from Gaia DR2, we investigated the space distribution of our sample stars and their properties in the colour-magnitude diagram.
Results. Our final sample consists of 1002 mCP stars, most of which are new discoveries (only 59 common entries with the Catalogue of Ap, HgMn and Am stars). Traditional mCP star peculiarities have been identified in all but 36 stars, highlighting the efficiency of the code’s peculiarity identification capabilities. The derived temperature and peculiarity types are in agreement with manually derived classifications and the literature. Our sample stars are between 100 Myr and 1 Gyr old, with the majority having masses between 2 M⊙ and 3 M⊙. Our results could be considered as strong evidence for an inhomogeneous age distribution among low-mass (M < 3 M⊙) mCP stars; however, we caution that our sample has not been selected on the basis of an unbiased, direct detection of a magnetic field. We identified several astrophysically interesting objects: the mCP stars LAMOST J122746.05+113635.3 and LAMOST J150331.87+093125.4 have distances and kinematical properties in agreement with halo stars; LAMOST J034306.74+495240.7 is an eclipsing binary system (Porb = 5.1435 ± 0.0012 d) hosting an mCP star component; and LAMOST J050146.85+383500.8 was found to be an SB2 system likely comprising of an mCP star and a supergiant component.
Conclusions. With our work, we significantly increase the sample size of known Galactic mCP stars, paving the way for future in-depth statistical studies.
Key words: stars: chemically peculiar / stars: abundances / binaries: eclipsing
Tables A.1, B.1, and C.1 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/640/A40
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.