Issue |
A&A
Volume 636, April 2020
|
|
---|---|---|
Article Number | A95 | |
Number of page(s) | 16 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201937323 | |
Published online | 27 April 2020 |
Euclid: The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments⋆
1
Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK
e-mail: anurag.deshpande.18@ucl.ac.uk
2
I.N.F.N.–Sezione di Roma Piazzale Aldo Moro, 2 – c/o Dipartimento di Fisica, Edificio G. Marconi, 00185 Roma, Italy
3
INAF-Osservatorio Astronomico di Roma, Via Frascati 33, 00078 Monteporzio Catone, Italy
4
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
5
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
6
INFN-Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy
7
Dipartimento di Fisica, Universitá degli Studi di Torino, Via P. Giuria 1, 10125 Torino, Italy
8
INAF-Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese, TO, Italy
9
INFN-Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
10
INAF-IASF Milano, Via Alfonso Corti 12, 20133 Milano, Italy
11
Institut d’Astrophysique de Paris, 98bis Boulevard Arago, 75014 Paris, France
12
Université St Joseph, UR EGFEM, Faculty of Sciences, Beirut, Lebanon
13
Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse, CNRS, UPS, CNES, 14 Av. Edouard Belin, 31400 Toulouse, France
14
Departamento de Física, FCFM, Universidad de Chile, Blanco Encalada 2008, Santiago, Chile
15
Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain
16
Institut d’Estudis Espacials de Catalunya (IEEC), 08034 Barcelona, Spain
17
INAF-Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 93/3, 40129 Bologna, Italy
18
Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, 85748 Garching, Germany
19
INAF-Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli, Italy
20
Institut de Física d’Altes Energies IFAE, 08193 Bellaterra, Barcelona, Spain
21
Department of Physics “E. Pancini”, University Federico II, Via Cinthia 6, 80126 Napoli, Italy
22
INFN section of Naples, Via Cinthia 6, 80126 Napoli, Italy
23
Centre National d’Etudes Spatiales, Toulouse, France
24
Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
25
ESAC/ESA, Camino Bajo del Castillo, s/n., Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Madrid, Spain
26
Department of Astronomy, University of Geneva, ch. d’Écogia 16, 1290 Versoix, Switzerland
27
INFN-Padova, Via Marzolo 8, 35131 Padova, Italy
28
Department of Physics & Astronomy, University of Sussex, Brighton BN1 9QH, UK
29
Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
30
von Hoerner & Sulger GmbH, SchloßPlatz 8, 68723 Schwetzingen, Germany
31
Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-Maximilians-Universität München, Scheinerstrasse 1, 81679 München, Germany
32
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
33
Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
34
Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, 69622 Villeurbanne, France
35
Université de Genève, Département de Physique Théorique and Centre for Astroparticle Physics, 24 quai Ernest-Ansermet, 1211 Genève 4, Switzerland
36
Institut d’Astrophysique Spatiale (IAS), Bâtiment 121, Université Paris-Sud 11 and CNRS, UMR 8617, 91405 Orsay, France
37
Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, 0315 Oslo, Norway
38
Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany
39
Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
40
Université de Paris, 75013 Paris, France
41
LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, 75014 Paris, France
42
Observatoire de Sauverny, Ecole Polytechnique Fédérale de Lau- sanne, 1290 Versoix, Switzerland
43
Dipartimento di Fisica e Astronomia, Universitá di Bologna, Via Gobetti 93/2, 40129 Bologna, Italy
44
INFN-Bologna, Via Irnerio 46, 40126 Bologna, Italy
45
INAF-Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, 34131 Trieste, Italy
46
Space Science Data Center, Italian Space Agency, via del Politecnico snc, 00133 Roma, Italy
47
Institute of Space Sciences (IEEC-CSIC), c/Can Magrans s/n, 08193 Cerdanyola del Vallés, Barcelona, Spain
48
INFN-Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
49
Instituto de Astrofísica e Ciências do Espaço, Faculdade de Ciências, Universidade de Lisboa, Tapada da Ajuda, 1349-018 Lisboa, Portugal
50
Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, Campo Grande, PT1749-016 Lisboa, Portugal
51
Universidad Politécnica de Cartagena, Departamento de Electrónica y Tecnología de Computadoras, 30202 Cartagena, Spain
52
Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
Received:
16
December
2019
Accepted:
4
March
2020
Context. Stage IV weak lensing experiments will offer more than an order of magnitude leap in precision. We must therefore ensure that our analyses remain accurate in this new era. Accordingly, previously ignored systematic effects must be addressed.
Aims. In this work, we evaluate the impact of the reduced shear approximation and magnification bias on information obtained from the angular power spectrum. To first-order, the statistics of reduced shear, a combination of shear and convergence, are taken to be equal to those of shear. However, this approximation can induce a bias in the cosmological parameters that can no longer be neglected. A separate bias arises from the statistics of shear being altered by the preferential selection of galaxies and the dilution of their surface densities in high-magnification regions.
Methods. The corrections for these systematic effects take similar forms, allowing them to be treated together. We calculated the impact of neglecting these effects on the cosmological parameters that would be determined from Euclid, using cosmic shear tomography. To do so, we employed the Fisher matrix formalism, and included the impact of the super-sample covariance. We also demonstrate how the reduced shear correction can be calculated using a lognormal field forward modelling approach.
Results. These effects cause significant biases in Ωm, σ8, ns, ΩDE, w0, and wa of −0.53σ, 0.43σ, −0.34σ, 1.36σ, −0.68σ, and 1.21σ, respectively. We then show that these lensing biases interact with another systematic effect: the intrinsic alignment of galaxies. Accordingly, we have developed the formalism for an intrinsic alignment-enhanced lensing bias correction. Applying this to Euclid, we find that the additional terms introduced by this correction are sub-dominant.
Key words: gravitational lensing: weak / cosmology: observations / methods: analytical
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.