Issue |
A&A
Volume 636, April 2020
|
|
---|---|---|
Article Number | A109 | |
Number of page(s) | 12 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201936735 | |
Published online | 27 April 2020 |
Search for non-thermal X-ray emission in the colliding wind binary Cygnus OB2 #8A⋆
1
Space Sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Allée du 6 Août, 19c, Bât B5c, 4000 Liège, Belgium
e-mail: emossoux@ulg.ac.be
2
School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
Received:
19
September
2019
Accepted:
13
March
2020
Aims. Cyg OB2 #8A is a massive O-type binary displaying strong non-thermal radio emission. Owing to the compactness of this binary, emission of non-thermal X-ray photons via inverse Compton scattering is expected.
Methods. We first revised the orbital solution for Cyg OB2 #8A using new optical spectra. We then reduced and analysed X-ray spectra obtained with XMM-Newton, Swift, INTEGRAL, and NuSTAR.
Results. The analysis of the XMM-Newton and Swift data allows us to better characterise the X-ray emission from the stellar winds and colliding winds region at energies below 10 keV. We confirm the variation of the broad-band light curve of Cyg OB2 #8A along the orbit with, for the first time, the observation of the maximum emission around phase 0.8. The minimum ratio of the X-ray to bolometric flux of Cyg OB2 #8A remains well above the level expected for single O-type stars, indicating that the colliding wind region is not disrupted during the periastron passage. The analysis of the full set of publicly available INTEGRAL observations allows us to refine the upper limit on the non-thermal X-ray flux of the Cyg OB2 region between 20 and 200 keV. Two NuSTAR observations (phases 0.028 and 0.085) allow us to study the Cyg OB2 #8A spectrum up to 30 keV. These data do not provide evidence of the presence of non-thermal X-rays, but bring more stringent constraints on the flux of a putative non-thermal component. Finally, we computed, thanks to a new dedicated model, the anisotropic inverse Compton emission generated in the wind shock region. The theoretical non-thermal emission appears to be compatible with observational limits and the kinetic luminosity computed from these models is in good agreement with the unabsorbed flux observed below 10 keV.
Key words: stars: early-type / stars: massive / binaries: spectroscopic / stars: individual: Cyg OB2 8a
Based on data collected with NASA missions NuSTAR and Swift, and the ESA observatories XMM-Newton and INTEGRAL, two ESA Science Missions with instruments and contributions directly funded by ESA member states and the USA (NASA). Also based on optical spectra collected at the Observatoire de Haute Provence (France).
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.