Issue |
A&A
Volume 635, March 2020
|
|
---|---|---|
Article Number | A105 | |
Number of page(s) | 14 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201937003 | |
Published online | 23 March 2020 |
Hints on the origins of particle traps in protoplanetary disks given by the Mdust – M⋆ relation
1
Max-Planck-Institut für Astronomie,
Königstuhl 17,
69117
Heidelberg,
Germany
e-mail: pinilla@mpia.de
2
Lunar and Planetary Laboratory, The University of Arizona,
Tucson,
AZ
85721,
USA
3
Earths in Other Solar Systems Team, NASA Nexus for Exoplanet System Science,
Washington,
DC,
USA
Received:
28
October
2019
Accepted:
29
January
2020
Context. Demographic surveys of protoplanetary disks, carried out mainly with the Atacama Large Millimeter/submillimete Array, have provided access to a large range of disk dust masses (Mdust) around stars with different stellar types and in different star-forming regions. These surveys found a power-law relation between Mdust and M⋆ that steepens in time, but which is also flatter for transition disks (TDs).
Aims. We aim to study the effect of dust evolution in the Mdust−M⋆ relation. In particular, we are interested in investigating the effect of particle traps on this relation.
Methods. We performed dust evolution models, which included perturbations to the gas surface density with different amplitudes to investigate the effect of particle trapping on the Mdust−M⋆ relation. These perturbations were aimed at mimicking pressure bumps that originated from planets. We focused on the effect caused by different stellar and disk masses based on exoplanet statistics that demonstrate a dependence of planet mass on stellar mass and metallicity.
Results. Models of dust evolution can reproduce the observed Mdust−M⋆ relation in different star-forming regions when strong pressure bumps are included and when the disk mass scales with stellar mass (case of Mdisk = 0.05 M⋆ in our models). This result arises from dust trapping and dust growth beyond centimeter-sized grains inside pressure bumps. However, the flatter relation of Mdust − M⋆ for TDs and disks with substructures cannot be reproduced by the models unless the formation of boulders is inhibited inside pressure bumps.
Conclusions. In the context of pressure bumps originating from planets, our results agree with current exoplanet statistics on giant planet occurrence increasing with stellar mass, but we cannot draw a conclusion about the type of planets needed in the case of low-mass stars. This is attributed to the fact that for M⋆ < 1 M⊙, the observed Mdust obtained from models is very low due to the efficient growth of dust particles beyond centimeter-sizes inside pressure bumps.
Key words: accretion, accretion disks / protoplanetary disks / planets and satellites: formation
© P. Pinilla et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.