Issue |
A&A
Volume 631, November 2019
|
|
---|---|---|
Article Number | L7 | |
Number of page(s) | 5 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/201936447 | |
Published online | 05 November 2019 |
Letter to the Editor
First imaging spectroscopy observations of solar drift pair bursts
1
Institute of Solar-Terrestrial Physics, Irkutsk 664033, Russia
e-mail: a_kuzn@iszf.irk.ru
2
School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
Received:
2
August
2019
Accepted:
11
October
2019
Drift pairs are an unusual and puzzling type of fine structure sometimes observed in dynamic spectra of solar radio emission. They appear as two identical short narrowband drifting stripes separated in time; both positive and negative frequency drifts are observed. Currently, due to the lack of imaging observations, there is no satisfactory explanation for this phenomenon. Using the Low Frequency Array (LOFAR), we report unique observations of a cluster of drift pair bursts in the frequency range of 30−70 MHz made on 12 July 2017. Spectral imaging capabilities of the instrument have allowed us for the first time to resolve the temporal and frequency evolution of the source locations and sizes at a fixed frequency and along the drifting pair components. Sources of two components of a drift pair have been imaged and found to propagate in the same direction along nearly the same trajectories. Motion of the second component source is seen to be delayed in time with respect to that of the first one. The source trajectories can be complicated and non-radial; positive and negative frequency drifts correspond to opposite propagation directions. The drift pair bursts with positive and negative frequency drifts, as well as the associated broadband type-III-like bursts, are produced in the same regions. The visible source velocities are variable from zero to a few 104 (up to ∼105) km s−1, which often exceeds the velocities inferred from the drift rate (∼104 km s−1). The visible source sizes are of about 10′−18′; they are more compact than typical type III sources at the same frequencies. The existing models of drift pair bursts cannot adequately explain the observed features. We discuss the key issues that need to be addressed, and in particular the anisotropic scattering of the radio waves. The broadband bursts observed simultaneously with the drift pairs differ in some aspects from common type III bursts and may represent a separate type of emission.
Key words: Sun: radio radiation / techniques: imaging spectroscopy
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.