Issue |
A&A
Volume 631, November 2019
|
|
---|---|---|
Article Number | A75 | |
Number of page(s) | 11 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201936208 | |
Published online | 22 October 2019 |
Hot subdwarf wind models with accurate abundances
I. Hydrogen dominated stars HD 49798 and BD+18° 2647⋆
1
Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Czech Republic
e-mail: krticka@physics.muni.cz
2
Istituto di Astrofisica Spaziale e Fisica Cosmica Milano, Via Alfonso Corti 12, 20133 Milano, Italy
3
Astronomický ústav, Akademie věd České republiky, Fričova 298, 251 65 Ondřejov, Czech Republic
4
Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha 2360102, Valparaíso, Chile
Received:
28
June
2019
Accepted:
16
September
2019
Context. Hot subdwarfs are helium burning objects in late stages of their evolution. These subluminous stars can develop winds driven by light absorption in the lines of heavier elements. The wind strength depends on chemical composition which can significantly vary from star to star.
Aims. We aim to understand the influence of metallicity on the strength of the winds of the hot hydrogen-rich subdwarfs HD 49798 and BD+18° 2647.
Methods. We used high-resolution UV and optical spectra to derive stellar parameters and abundances using the TLUSTY and SYNSPEC codes. For derived stellar parameters, we predicted wind structure (including mass-loss rates and terminal velocities) with our METUJE code.
Results. We derived effective temperature Teff = 45 900 K and mass M = 1.46 M⊙ for HD 49798 and Teff = 73 000 K and M = 0.38 M⊙ for BD+18° 2647. The derived surface abundances can be interpreted as a result of interplay between stellar evolution and diffusion. The subdwarf HD 49798 has a strong wind that does not allow for chemical separation and consequently the star shows solar chemical composition modified by hydrogen burning. On the other hand, we did not find any wind in BD+18° 2647 and its abundances are therefore most likely affected by radiative diffusion. Accurate abundances do not lead to a significant modification of wind mass-loss rate for HD 49798, because the increase of the contribution of iron and nickel to the radiative force is compensated by the decrease of the radiative force due to other elements. The resulting wind mass-loss rate Ṁ = 2.1 × 10−9 M⊙ yr−1 predicts an X-ray light curve during the eclipse which closely agrees with observations. On the other hand, the absence of the wind in BD+18° 2647 for accurate abundances is a result of its peculiar chemical composition.
Conclusions. Wind models with accurate abundances provide more reliable wind parameters, but the influence of abundances on the wind parameters is limited in many cases.
Key words: stars: winds / outflows / stars: mass-loss / stars: early-type / subdwarfs / X-rays: binaries
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.