Issue |
A&A
Volume 628, August 2019
|
|
---|---|---|
Article Number | A85 | |
Number of page(s) | 14 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201935378 | |
Published online | 12 August 2019 |
Disk masses in the Orion Molecular Cloud-2: distinguishing time and environment★
1
Leiden Observatory, Leiden University,
PO Box 9513,
2300 RA Leiden,
The Netherlands
e-mail: terwisga@strw.leidenuniv.nl
2
Max-Planck-Institut für Extraterrestrische Physik, Gießenbachstraße,
85741
Garching bei München,
Germany
Received:
27
February
2019
Accepted:
23
May
2019
Context. The mass evolution of protoplanetary disks is driven by internal processes and by external factors such as photoevaporation. Disentangling these two effects, however, remains difficult.
Aims. We measured the dust masses of a sample of 132 disks in the Orion Molecular Cloud 2 (OMC-2) region, and compared them to externally photoevaporated disks in the Trapezium cluster, and to disks in nearby low-mass star-forming regions (SFRs). This allowed us to test whether initial disk properties are the same in high- and low-mass SFRs, and enabled a direct measurement of the effect of external photoevaporation on disks.
Methods. A ~ 20′ × 4′ mosaic of 3 mm continuum observations from the Atacama Large Millimeter/submillimeter Array (ALMA) was used to measure the fluxes of 132 disks and 35 protostars >0.5 pc away from the Trapezium. We identify and characterize a sample of 34 point sources not included in the Spitzer catalog on which the sample is based.
Results. Of the disks, 37 (28%) are detected, and have masses ranging from 7−270 M⊕. The detection rate for protostars is higher (69%). Disks near the Trapezium are found to be less massive by a factor 0.18−0.11+0.18, implying a mass loss rate of 8 × 10−8 M⊙ yr−1.
Conclusions. Our observations allow us to distinguish the impact of time and environment on disk evolution in a single SFR. The disk mass distribution in OMC-2 is statistically indistinguishable from that in nearby low-mass SFRs like Lupus and Taurus. We conclude that age is the main factor that determines the evolution of these disks. This result is robust with respect to assumptions of dust temperature, sample incompleteness, and biases. The difference between the OMC-2 and Trapezium cluster samples is consistent with mass loss driven by far-ultraviolet radiation near the Trapezium. Taken together, this implies that in isolation disk formation and evolution proceed similarly, regardless of cloud mass.
Key words: stars: pre-main sequence / protoplanetary disks / techniques: interferometric
Full Tables 1 and A.1, and a copy of the reduced map (FITS file) are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/628/A85
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.