Issue |
A&A
Volume 628, August 2019
|
|
---|---|---|
Article Number | A42 | |
Number of page(s) | 14 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201833486 | |
Published online | 06 August 2019 |
Formation of hot Jupiters through disk migration and evolving stellar tides
Max Planck Institute for Solar System Research,
Justus-von-Liebig-Weg 3,
37077
Göttingen,
Germany
e-mail: heller@mps.mpg.de
Received:
23
May
2018
Accepted:
30
June
2019
Since the discovery of Jupiter-sized planets in extremely close orbits around Sun-like stars, several mechanisms have been proposed to produce these “hot Jupiters”. Here we address their pile-up at 0.05 AU observed in stellar radial velocity surveys, their long-term orbital stability in the presence of stellar tides, and their occurrence rate of 1.2 ± 0.38% in one framework. We calculate the combined torques on the planet from the stellar dynamical tide and from the protoplanetary disk in the type-II migration regime. The disk is modeled as a 2D nonisothermal viscous disk parameterized to reproduce the minimum-mass solar nebula. We simulate an inner disk cavity at various radial positions near the star and simulate stellar rotation periods according to observations of young star clusters. The planet is on a circular orbit in the disk midplane and in the equatorial plane of the star. We show that the two torques can add up to zero beyond the corotation radius around young, solar-type stars and stop inward migration. Monte Carlo simulations with plausible variations of our nominal parameterization of the star-disk-planet model predict hot-Jupiter survival rates between about 3% (for an α disk viscosity of 10−1) and 15% (for α = 10−3) against consumption by the star. Once the protoplanetary disk has been fully accreted, the surviving hot Jupiters are pushed outward from their tidal migration barrier and pile up at about 0.05 AU, as we demonstrate using a numerical implementation of a stellar dynamical tide model coupled with stellar evolution tracks. Orbital decay is negligible on a one-billion-year timescale due to the contraction of highly dissipative convective envelopes in young Sun-like stars. We find that the higher pile-up efficiency around metal-rich stars can at least partly explain the observed positive correlation between stellar metallicity and hot-Jupiter occurrence rate. Combined with the observed hot-Jupiter occurrence rate, our results for the survival rate imply that ≲8% (α = 10−3) to ≲43% (α = 10−1) of sun-like stars initially encounter an inwardly migrating hot Jupiter. Our scenario reconciles models and observations of young spinning stars with the observed hot-Jupiter pile up and hot-Jupiter occurrence rates.
Key words: planets and satellites: dynamical evolution and stability / planets and satellites: formation / planet-disk interactions / planets and satellites: gaseous planets / planet-star interactions / stars: solar-type
© R. Heller 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.