Issue |
A&A
Volume 627, July 2019
|
|
---|---|---|
Article Number | A125 | |
Number of page(s) | 11 | |
Section | Astrophysical processes | |
DOI | https://doi.org/10.1051/0004-6361/201834460 | |
Published online | 11 July 2019 |
Indications of non-conservative mass transfer in AMXPs
1
Università degli Studi di Palermo, Dipartimento di Fisica e Chimica, Via Archirafi 36, 90123 Palermo, Italy
e-mail: alessio.marino@unipa.it
2
INAF/IASF Palermo, Via Ugo La Malfa 153, 90146 Palermo, Italy
3
IRAP, Université de Toulouse, CNRS, UPS, CNES, Toulouse, France
4
Università degli Studi di Cagliari, Dipartimento di Fisica, SP Monserrato-Sestu km 0.7, 09042 Monserrato, Italy
5
INAF, Osservatorio Astronomico di Roma, Via di Frascati 33, 00044 Monteporzio Catone (Roma), Italy
Received:
19
October
2018
Accepted:
4
June
2019
Context. Since the discovery of the first accreting millisecond X-ray pulsar (AMXP) SAX J1808.4−3658 in 1998, the family of these sources has kept growing. Currently, it has 22 members. All AMXPs are transients with usually very long quiescence periods, implying that the mass accretion rate in these systems is quite low and not constant. Moreover, for at least three sources, a non-conservative evolution was also proposed.
Aims. Our purpose is to study the long term averaged mass-accretion rates in all the AMXPs discovered so far, to investigate a non-conservative mass-transfer scenario.
Methods. We calculated the expected mass-transfer rate under the hypothesis of a conservative evolution based on their orbital periods and on the (minimum) mass of the secondary star (as derived from the mass function), driven by gravitational radiation and/or magnetic braking. Using this theoretical mass transfer, we determined the expected accretion luminosity of the systems. Thus, we achieved the lower limit to the distance of the sources by comparing the computed theoretical luminosity and the observed flux averaged over a time period of 20 years. Then, the lower limit to the distance of the sources was compared to the value of the distance reported in the literature to evaluate how reasonable the hypothesis of a conservative mass transfer is.
Results. Based on a sample of 18 sources, we found strong evidence of a non-conservative mass transfer for five sources, for which the estimated distance lower limits are higher than their known distances. We also report hints of mass outflows in a further six sources. The discrepancy can be fixed under the hypothesis of a non-conservative mass transfer in which a fraction of the mass transferred onto the compact object is swept away from the system, likely due to the (rotating magnetic dipole) radiation pressure of the pulsar.
Key words: stars: neutron / X-rays: binaries / pulsars: general / X-rays: stars / X-rays: individuals: IGR J17498−2921 / X-rays: individuals: XTE J1814−338
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.