Issue |
A&A
Volume 627, July 2019
|
|
---|---|---|
Article Number | A101 | |
Number of page(s) | 25 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201833560 | |
Published online | 08 July 2019 |
Dissecting bombs and bursts: non-LTE inversions of low-atmosphere reconnection in SST and IRIS observations
1
Institute for Solar Physics, Department of Astronomy, Stockholm University, AlbaNova University Centre, 106 91 Stockholm, Sweden
e-mail: gregal.vissers@astro.su.se
2
Institute of Theoretical Astrophysics, University of Oslo, Blindern, PO Box 1029 0315 Oslo, Norway
3
Rosseland Centre for Solar Physics, University of Oslo, Blindern, PO Box 1029 0315 Oslo, Norway
4
Royal Swedish Academy of Sciences, Box 50005 104 05 Stockholm, Sweden
Received:
4
June
2018
Accepted:
4
May
2019
Ellerman bombs and UV bursts are transient brightenings that are ubiquitously observed in the lower atmospheres of active and emerging flux regions. As they are believed to pinpoint sites of magnetic reconnection in reconfiguring fields, understanding their occurrence and detailed evolution may provide useful insight into the overall evolution of active regions. Here we present results from inversions of SST/CRISP and CHROMIS, as well as IRIS data of such transient events. Combining information from the Mg II h & k, Si IV, and Ca II 8542 Å and Ca II H & K lines, we aim to characterise their temperature and velocity stratification, as well as their magnetic field configuration. We find average temperature enhancements of a few thousand kelvin, close to the classical temperature minimum and similar to previous studies, but localised peak temperatures of up to 10 000–15 000 K from Ca II inversions. Including Mg II appears to generally dampen these temperature enhancements to below 8000 K, while Si IV requires temperatures in excess of 10 000 K at low heights, but may also be reproduced with secondary temperature enhancements of 35 000–60 000 K higher up. However, reproducing Si IV comes at the expense of overestimating the Mg II emission. The line-of-sight velocity maps show clear bi-directional jet signatures for some events and strong correlation with substructure in the intensity images in general. Absolute line-of-sight velocities range between 5 and 20 km s−1 on average, with slightly larger velocities towards, rather than away from, the observer. The inverted magnetic field parameters show an enhancement of the horizontal field co-located with the brightenings at heights similar to that of the temperature increase. We are thus able to largely reproduce the observational properties of Ellerman bombs with the UV burst signature (e.g. intensities, profile asymmetries, morphology, and bi-directional jet signatures), with temperature stratifications peaking close to the classical temperature minimum. Correctly modelling the Si IV emission in agreement with all other diagnostics is however an outstanding issue and remains paramount in explaining its apparent coincidence with Hα emission. Fine-tuning the approach (accounting for resolution differences, fitting localised temperature enhancements, and/or performing spatially coupled inversions) is likely necessary in order to obtain better agreement between all considered diagnostics.
Key words: Sun: activity / Sun: atmosphere / Sun: magnetic fields / radiative transfer
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.