Issue |
A&A
Volume 626, June 2019
|
|
---|---|---|
Article Number | A50 | |
Number of page(s) | 28 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201935415 | |
Published online | 12 June 2019 |
A census of massive stars in NGC 346⋆
Stellar parameters and rotational velocities
1
Astrophysics Research Centre, School of Mathematics & Physics, The Queen’s University of Belfast, BT7 1NN Belfast, UK
e-mail: p.dufton@qub.ac.uk
2
UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
3
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain
4
Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstr. 12-14, 69120 Heidelberg, Germany
5
Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
Received:
6
March
2019
Accepted:
7
May
2019
Spectroscopy for 247 stars towards the young cluster NGC 346 in the Small Magellanic Cloud has been combined with that for 116 targets from the VLT-FLAMES Survey of Massive Stars. Spectral classification yields a sample of 47 O-type and 287 B-type spectra, while radial-velocity variations and/or spectral multiplicity have been used to identify 45 candidate single-lined (SB1) systems, 17 double-lined (SB2) systems, and one triple-lined (SB3) system. Atmospheric parameters (Teff and log g) and projected rotational velocities (ve sin i) have been estimated using TLUSTY model atmospheres; independent estimates of ve sin i were also obtained using a Fourier Transform method. Luminosities have been inferred from stellar apparent magnitudes and used in conjunction with the Teff and ve sin i estimates to constrain stellar masses and ages using the BONNSAI package. We find that targets towards the inner region of NGC 346 have higher median masses and projected rotational velocities, together with smaller median ages than the rest of the sample. There appears to be a population of very young targets with ages of less than 2 Myr, which have presumably all formed within the cluster. The more massive targets are found to have lower projected rotational velocities consistent with previous studies. No significant evidence is found for differences with metallicity in the stellar rotational velocities of early-type stars, although the targets in the Small Magellanic Cloud may rotate faster than those in young Galactic clusters. The rotational velocity distribution for single non-supergiant B-type stars is inferred and implies that a significant number have low rotational velocity (≃10% with ve < 40 km s−1), together with a peak in the probability distribution at ve≃ 300 km s−1. Larger projected rotational velocity estimates have been found for our Be-type sample and imply that most have rotational velocities between 200–450 km s−1.
Key words: stars: early-type / stars: atmospheres / stars: rotation / stars: evolution / Magellanic Clouds / open clusters and associations: individual: NGC 346
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.