Issue |
A&A
Volume 625, May 2019
|
|
---|---|---|
Article Number | A146 | |
Number of page(s) | 20 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201935455 | |
Published online | 29 May 2019 |
Inner and outer rings are not strongly coupled with stellar bars
1
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain
e-mail: simondiazgar@gmail.com
2
Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain
3
Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK
4
Astronomy Research Unit, University of Oulu, Oulu 90014, Finland
Received:
12
March
2019
Accepted:
8
April
2019
Rings are distinctive features of many disc galaxies and their location and properties are closely related to the disc dynamics. In particular, rings are often associated to stellar bars, but the details of this connection are far from clear. We have studied the frequency and dimensions of inner and outer rings in the local Universe as a function of disc parameters and the amplitude of non-axisymmetries. We used the 1320 not highly inclined disc galaxies (i < 65°) from the S4G survey. The ring fraction increases with bar Fourier density amplitude: this can be interpreted as evidence for the role of bars in ring formation. The sizes of inner rings are positively correlated with bar strength: this can be linked to the radial displacement of the 1/4 ultraharmonic resonance while the bar grows and the pattern speed decreases. The ring’s intrinsic ellipticity is weakly controlled by the non-axisymmetric perturbation strength: this relation is not as strong as expected from simulations, especially when we include the dark matter halo in the force calculation. The ratio of outer-to-inner ring semi-major axes is uncorrelated with bar strength: this questions the manifold origin of rings. In addition, we confirm that (i) ∼1/3 (∼1/4) of the galaxies hosting inner (outer) rings are not barred; (ii) on average, the sizes and shapes of rings are roughly the same for barred and non-barred galaxies; and (iii) the fraction of inner (outer) rings is a factor of 1.2−1.4 (1.65−1.9) larger in barred galaxies than in their non-barred counterparts. Finally, we apply unsupervised machine learning (self-organising maps, SOMs) to show that, among early-type galaxies, ringed or barred galaxies cannot be univocally distinguished based on 20 internal and external fundamental parameters. We confirm, with the aid of SOMs, that rings are mainly hosted by red, massive, gas-deficient, dark-matter poor, and centrally concentrated galaxies. We conclude that the present-day coupling between rings and bars is not as robust as predicted by numerical models, and diverse physical mechanisms and timescales determine ring formation and evolution.
Key words: galaxies: evolution / galaxies: structure / galaxies: statistics / galaxies: spiral / galaxies: fundamental parameters / galaxies: photometry
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.