Issue |
A&A
Volume 625, May 2019
|
|
---|---|---|
Article Number | A130 | |
Number of page(s) | 13 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201935096 | |
Published online | 27 May 2019 |
Photometric redshift galaxies as tracers of the filamentary network
1
Tartu Observatory, University of Tartu, Observatooriumi 1, 61602 Tõravere, Estonia
e-mail: maarja@to.ee
2
Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany
3
Université de Lorraine, CNRS, IECL, 54000 Nancy, France
Received:
22
January
2019
Accepted:
7
April
2019
Context. Galaxy filaments are the dominant feature in the overall structure of the cosmic web. The study of the filamentary web is an important aspect in understanding galaxy evolution and the evolution of matter in the Universe. A map of the filamentary structure is an adequate probe of the web.
Aims. We propose that photometric redshift galaxies are significantly positively associated with the filamentary structure detected from the spatial distribution of spectroscopic redshift galaxies. The long-term aim is to use the photometric galaxies in addition to spectroscopic galaxies to create a more detailed and far-reaching map of the filamentary structure.
Methods. The catalogues of spectroscopic and photometric galaxies are seen as point-process realisations in a sphere, and the catalogue of filamentary spines is proposed to be a realisation of a random set in a sphere. The positive association between these sets was studied using a bivariate J-function, which is a summary statistics studying clustering. A quotient D was built to estimate the distance distribution of the filamentary spine to galaxies in comparison to the distance distribution of the filamentary spine to random points in 3-dimensional Euclidean space. This measure also gives a physical distance scale to the distances between filamentary spines and the studied sets of galaxies. In the 3-dimensional case, galaxies and random points are described as line of sights following through their positions on the sphere.
Results. The bivariate J-function shows a statistically significant clustering effect in between filamentary spines and photometric redshift galaxies. The quotient D confirms the previous result that smaller distances exist with higher probability between the photometric galaxies and filaments. The trend of smaller distances between the objects grows stronger at higher redshift. Additionally, the quotient D for photometric galaxies gives a rough estimate for the filamentary spine width of about 1 Mpc.
Conclusions. Photometric redshift galaxies are positively associated with filamentary spines detected from the spatial distribution of spectroscopic galaxies. In addition to the spatial distribution of spectroscopic galaxies, the information embedded in the photometric galaxies could contribute greatly to the detection of cosmic web structures.
Key words: methods: statistical / galaxies: statistics / large-scale structure of Universe
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.