Issue |
A&A
Volume 624, April 2019
|
|
---|---|---|
Article Number | A118 | |
Number of page(s) | 15 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201935031 | |
Published online | 24 April 2019 |
Hint of curvature in the orbital motion of the exoplanet 51 Eridani b using 3 yr of VLT/SPHERE monitoring★,★★
1
Max-Planck-Institut für Astronomie,
Königstuhl 17,
69117
Heidelberg, Germany
2
STAR Institute, Université de Liège,
Allée du Six Août 19c,
4000
Liège, Belgium
e-mail: almaire@uliege.be
3
CNRS, IPAG, Université Grenoble Alpes,
38000
Grenoble, France
4
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité,
5 place Jules Janssen,
92195
Meudon, France
5
INAF Catania Astrophysical Observatory,
Via S. Sofia 78,
95123
Catania, Italy
6
INAF – Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova, Italy
7
Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova,
Via Marzolo, 8,
35121
Padova, Italy
8
INCT, Universidad de Atacama,
calle Copayapu 485,
Copiapó,
Atacama, Chile
9
Department of Physics & Astronomy, College of Charleston,
66 George Street,
Charleston,
SC
29424, USA
10
Institute for Astronomy, The University of Edinburgh, Royal Observatory,
Blackford Hill View,
Edinburgh,
EH9 3HJ, UK
11
European Southern Observatory, Alonso de Cordova 3107,
Casilla
19001
Vitacura,
Santiago 19, Chile
12
Aix-Marseille Université, CNRS, CNES, LAM,
Marseille, France
13
Unidad Mixta Internacional Franco-Chilena de Astronomía CNRS/INSU UMI 3386 and Departamento de Astronomía, Universidad de Chile,
Casilla 36-D,
Santiago, Chile
14
CRAL, UMR 5574, CNRS/ENS-Lyon/Université Lyon 1,
9 av. Ch. André,
69561
Saint-Genis-Laval, France
15
Department of Astronomy, Stockholm University, AlbaNova University Center,
106 91
Stockholm, Sweden
16
Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso,
Av. Gran Bretaña 1111,
Playa Ancha,
Valparaíso, Chile
17
Núcleo Milenio Formación Planetaria – NPF, Universidad de Valparaíso,
Av. Gran Bretaña 1111,
Playa Ancha,
Valparaíso, Chile
18
Department of Astronomy, University of Michigan, 1085 S. University Ave,
Ann Arbor,
MI 48109-1107, USA
19
Institute for Particle Physics and Astrophysics, ETH Zurich,
Wolfgang-Pauli-Strasse 27,
8093
Zurich, Switzerland
20
Geneva Observatory, University of Geneva,
Chemin des Maillettes 51,
1290
Versoix, Switzerland
21
Hamburger Sternwarte,
Gojenbergsweg 112,
21029
Hamburg, Germany
22
Núcleo de Astronomía, Facultad de Ingeniería y Ciencias, Universidad Diego Portales,
Av. Ejercito 441,
Santiago, Chile
23
Escuela de Ingeniería Industrial, Facultad de Ingeniería y Ciencias, Universidad Diego Portales,
Av. Ejercito 441,
Santiago, Chile
24
Université Côte d’Azur, OCA, CNRS,
Lagrange, France
25
NOVA Optical Infrared Instrumentation Group,
Oude Hoogeveensedijk 4,
7991 PD
Dwingeloo, The Netherlands
Received:
7
January
2019
Accepted:
15
March
2019
Context. The 51 Eridani system harbors a complex architecture with its primary star forming a hierarchical system with the binary GJ 3305AB at a projected separation of 2000 au, a giant planet orbiting the primary star at 13 au, and a low-mass debris disk around the primary star with possible cold and warm components inferred from the spectral energy distribution.
Aims. We aim to better constrain the orbital parameters of the known giant planet.
Methods. We monitored the system over three years from 2015 to 2018 with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument at the Very Large Telescope (VLT).
Results. We measure an orbital motion for the planet of ~130 mas with a slightly decreasing separation (~10 mas) and find a hint of curvature. This potential curvature is further supported at 3σ significance when including literature Gemini Planet Imager (GPI) astrometry corrected for calibration systematics. Fits of the SPHERE and GPI data using three complementary approaches provide broadly similar results. The data suggest an orbital period of 32−9+17 yr (i.e., 12−2+4 au in semi-major axis), an inclination of 133−7+14 deg, an eccentricity of 0.45−0.15+0.10, and an argument of periastron passage of 87−30+34 deg [mod 180°]. The time at periastron passage and the longitude of node exhibit bimodal distributions because we do not yet detect whether the planet is accelerating or decelerating along its orbit. Given the inclinations of the orbit and of the stellar rotation axis (134–144°), we infer alignment or misalignment within 18° for the star–planet spin-orbit. Further astrometric monitoring in the next 3–4 yr is required to confirm at a higher significance the curvature in the motion of the planet, determine if the planet is accelerating or decelerating on its orbit, and further constrain its orbital parameters and the star–planet spin-orbit.
Key words: planetary systems / methods: data analysis / stars: individual: 51 Eridani / techniques: high angular resolution / planets and satellites: dynamical evolution and stability / techniques: image processing
The fitted orbits and the histogram distributions of the orbital parameters are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A118
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.