Issue |
A&A
Volume 624, April 2019
|
|
---|---|---|
Article Number | A75 | |
Number of page(s) | 13 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201834762 | |
Published online | 11 April 2019 |
Combined asteroseismology, spectroscopy, and astrometry of the CoRoT B2V target HD 170580
1
Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
e-mail: Conny.Aerts@kuleuven.be
2
Department of Astrophysics/IMAPP, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
3
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
4
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, 17 Allée du 6 Août 19C, Bat. B5C, 4000 Liège, Belgium
5
INAF – Osservatorio Astrofisico di Arcetri Largo E. Fermi 5, 50125 Firenze, Italy
6
INAF – Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, Italy
Received:
3
December
2018
Accepted:
10
February
2019
Context. Space asteroseismology reveals that stellar structure and evolution models of intermediate- and high-mass stars are in need of improvement in terms of angular momentum and chemical element transport.
Aims. We aim to probe the interior structure of a hot, massive star in the core-hydrogen-burning phase of its evolution.
Methods. We analysed CoRoT space photometry, Gaia DR2 space astrometry, and high-resolution high signal-to-noise HERMES and HARPS time-series spectroscopy of the slowly rotating B2V star HD 170580.
Results. From the time-series spectroscopy, we derive v sin i = 4 ± 2 km s−1, where the uncertainty results from the complex pulsational line-profile variability that has been so far ignored in the literature. We detect 42 frequencies with amplitudes above five times the local noise level. Amongst these we identify five rotationally split triplets and one quintuplet. Asteroseismic modelling based on CoRoT, Gaia DR2, and spectroscopic data leads to a star of M ∼ 8 M⊙ near core-hydrogen exhaustion and an extended overshoot zone. The detected low-order pressure-mode frequencies cannot be fit within the uncertainties of the CoRoT data by models without atomic diffusion. Irrespective of this limitation, the low-order gravity modes reveal HD 170580 to be a slow rotator with an average rotation period between 73 and 98 d and a hint of small differential rotation.
Conclusions. Future Gaia DR3 data taking into account the multiplicity of the star, along with long-term TESS photometry would allow us to put better observational constraints on the asteroseismic models of this blue evolved massive star. Improved modelling with atomic diffusion, including radiative levitation, is needed to achieve compliance with the low helium surface abundance of the star. This poses immense computational challenges but is required to derive the interior rotation and mixing profiles of this star.
Key words: asteroseismology / stars: evolution / stars: interiors / stars: rotation / stars: oscillations / stars: individual: HD 170580
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.