Issue |
A&A
Volume 624, April 2019
|
|
---|---|---|
Article Number | A3 | |
Number of page(s) | 20 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201834520 | |
Published online | 29 March 2019 |
Full inversion of solar relativistic electron events measured by the Helios spacecraft
1
Dep. Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Barcelona, Spain
e-mail: dpacheco@fqa.ub.edu
2
Institut für Experimentelle und Angewandte Physik, University of Kiel, Germany
3
The Johns Hopkins University, Applied Physics Laboratory, Laurel, MD, USA
4
Now at NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD, USA
Received:
25
October
2018
Accepted:
9
February
2019
Context. The Parker Solar Probe and the incoming Solar Orbiter mission will provide measurements of solar energetic particle (SEP) events at close heliocentric distances from the Sun. Up to present, the largest data set of SEP events in the inner heliosphere are the observations by the two Helios spacecraft.
Aims. We re-visit a sample of 15 solar relativistic electron events measured by the Helios mission with the goal of better characterising the injection histories of solar energetic particles and their interplanetary transport conditions at heliocentric distances <1 AU.
Methods. The measurements provided by the E6 instrument on board Helios provide us with the electron directional distributions in eight different sectors that we use to infer the detailed evolution of the electron pitch-angle distributions. The results of a Monte Carlo interplanetary transport model, combined with a full inversion procedure, were used to fit the observed directional intensities in the 300–800 keV nominal energy channel. Unlike previous studies, we have considered both the energy and angular responses of the detector. This method allowed us to infer the electron release time profile at the source and determine the electron interplanetary transport conditions.
Results. We discuss the duration of the release time profiles and the values of the radial mean free path, and compare them with the values reported previously in the literature using earlier approaches. Five of the events show short injection histories (<30 min) at the Sun and ten events show long-lasting (>30 min) injections. The values of mean free path range from 0.02 AU to 0.27 AU.
Conclusions. The inferred injection histories match with the radio and soft X-ray emissions found in literature. We find no dependence of the radial mean free path on the radial distance. In addition, we find no apparent relation between the strength of interplanetary scattering and the size of the solar particle release.
Key words: Sun: particle emission / Sun: heliosphere / Sun: flares / interplanetary medium
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.