Issue |
A&A
Volume 624, April 2019
|
|
---|---|---|
Article Number | A108 | |
Number of page(s) | 17 | |
Section | Atomic, molecular, and nuclear data | |
DOI | https://doi.org/10.1051/0004-6361/201834446 | |
Published online | 22 April 2019 |
Modeling sulfur depletion in interstellar clouds⋆
Max-Planck-Institut für extraterrestrische Physik, Garching 85748, Germany
e-mail: jclaas@mpe.mpg.de, caselli@mpe.mpg.de
Received:
17
October
2018
Accepted:
25
February
2019
Context. The elemental depletion of interstellar sulfur from the gas phase has been a recurring challenge for astrochemical models. Observations show that sulfur remains relatively non-depleted with respect to its cosmic value throughout the diffuse and translucent stages of an interstellar molecular cloud, but its atomic and molecular gas-phase constituents cannot account for this cosmic value toward lines of sight containing higher-density environments.
Aims. We have attempted to address this issue by modeling the evolution of an interstellar cloud from its pristine state as a diffuse atomic cloud to a molecular environment of much higher density, using a gas-grain astrochemical code and an enhanced sulfur reaction network.
Methods. A common gas-grain astrochemical reaction network has been systematically updated and greatly extended based on previous literature and previous sulfur models, with a focus on the grain chemistry and processes. A simple astrochemical model was used to benchmark the resulting network updates, and the results of the model were compared to typical astronomical observations sourced from the literature.
Results. Our new gas-grain astrochemical model is able to reproduce the elemental depletion of sulfur, whereby sulfur can be depleted from the gas-phase by two orders of magnitude, and that this process may occur under dark cloud conditions if the cloud has a chemical age of at least 106 years. The resulting mix of sulfur-bearing species on the grain ranges across all the most common chemical elements (H/C/N/O), not dissimilar to the molecules observed in cometary environments. Notably, this mixture is not dominated simply by H2S, unlike all other current astrochemical models.
Conclusions. Despite our relatively simple physical model, most of the known gas-phase S-bearing molecular abundances are accurately reproduced under dense conditions, however they are not expected to be the primary molecular sinks of sulfur. Our model predicts that most of the “missing” sulfur is in the form of organo-sulfur species that are trapped on grains.
Key words: astrochemistry / molecular processes / ISM: molecules
Full Tables A.1 and B.4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A108
© J. C. Laas and P. Caselli 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open Access funding provided by Max Planck Society.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.