Issue |
A&A
Volume 623, March 2019
|
|
---|---|---|
Article Number | A65 | |
Number of page(s) | 14 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201834748 | |
Published online | 06 March 2019 |
Globular clusters in the outer halo of M 31⋆
1
Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, PR China
e-mail: songw@bao.ac.cn
2
College of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
3
WHU-NAOC Joint Center for Astronomy, Wuhan University, Wuhan, Hubei 430072, PR China
Received:
30
November
2018
Accepted:
29
January
2019
In this paper, we present photometry of 53 globular clusters (GCs) in the M 31 outer halo, including the GALEX far-ultraviolet (FUV) and near-ultraviolet (NUV), SDSS ugriz, 15 intermediate-band filters of BATC, and 2MASS JHKs bands. By comparing the multicolour photometry with stellar population synthesis models, we determine the metallicities, ages, and masses for these GCs, aiming to probe the merging/accretion history of M 31. We find no clear trend of metallicity and mass with the de-projected radius. The halo GCs younger than ∼8 Gyr are mostly located at the de-projected radii around 100 kpc, but this may be due to a selection effect. We also find that the halo GCs have consistent metallicities with their spatially associated substructures, which provides further evidence of the physical association between them. Both the disc and halo GCs in M 31 show a bimodal luminosity distribution. However, we should emphasise that there are more faint halo GCs which are not seen in the disc. The bimodal luminosity function of the halo GCs may reflect a different origin or evolution environment in their original hosts. The M 31 halo GCs include one intermediate metallicity group (−1.5 < [Fe/H] < −0.4) and one metal-poor group ([Fe/H] < −1.5), while the disc GCs have one metal-rich group more. There are considerable differences between the halo GCs in M 31 and the Milky Way (MW). The total number of GCs in M 31 is approximately three times greater than in the MW, however M 31 has about six times more halo GCs than the MW. Compared to the halo GCs of M 31, those of the MW are mostly metal-poor. Both the numerous halo GCs and the higher-metallicity component are suggestive of an active merger history of M 31.
Key words: galaxies: individual: M 31 / globular clusters: general / galaxies: stellar content
Full Tables 1 and 2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/623/A65
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.