Issue |
A&A
Volume 622, February 2019
|
|
---|---|---|
Article Number | A202 | |
Number of page(s) | 18 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201834071 | |
Published online | 21 February 2019 |
How planetary growth outperforms migration
1
Lund Observatory, Department of Astronomy and Theoretical Physics, Lund University,
Box 43,
221 00
Lund,
Sweden
e-mail: anders@astro.lu.se
2
Earth-Life Science Institute (ELSI), Tokyo Institute of Technology,
Meguro,
Tokyo
152-8550,
Japan
Received:
11
August
2018
Accepted:
10
January
2019
Planetary migration is a major challenge for planet-formation theories. The speed of type-I migration is proportional to the mass of a protoplanet, while the final decade of growth of a pebble-accreting planetary core takes place at a rate that scales with the mass to the two-thirds power. This results in planetary growth tracks (i.e., the evolution of the mass of a protoplanet versus its distance from the star) that become increasingly horizontal (migration dominated) with the rising mass of the protoplanet. It has been shown recently that the migration torque on a protoplanet is reduced proportional to the relative height of the gas gap carved by the growing planet. Here we show from 1D simulations of planet–disc interaction that the mass at which a planet carves a 50% gap is approximately 2.3 times the pebble isolation mass. Our measurements of the pebble isolation mass from 1D simulations match published 3D results relatively well, except at very low viscosities (α < 10−3) where the 3D pebble isolation mass is significantly higher, possibly due to gap edge instabilities that are not captured in 1D. The pebble isolation mass demarks the transition from pebble accretion to gas accretion. Gas accretion to form gas-giant planets therefore takes place over a few astronomical units of migration after reaching first the pebble isolation mass and, shortly after, the 50% gap mass. Our results demonstrate how planetary growth can outperform migration both during core accretion and during gas accretion, even when the Stokes number of the pebbles is small, St ~ 0.01, and the pebble-to-gas flux ratio in the protoplanetary disc is in the nominal range of 0.01–0.02. We find that planetary growth is very rapid in the first million years of the protoplanetary disc and that the probability for forming gas-giant planets increases with the initial size of the protoplanetary disc and with decreasing turbulent diffusion.
Key words: planet-disk interactions / planets and satellites: formation / planets and satellites: gaseous planets
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.