Issue |
A&A
Volume 622, February 2019
|
|
---|---|---|
Article Number | A43 | |
Number of page(s) | 15 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201731732 | |
Published online | 24 January 2019 |
Dusty spirals triggered by shadows in transition discs
1
Instituto de Astrofísica, Pontificia Universidad Católica de Chile,
Santiago,
Chile
e-mail: ncuello@astro.puc.cl
2
Millennium Nucleus “Protoplanetary discs”,
Santiago,
Chile
3
Instituto de Física y Astronomía, Universidad de Valparaíso,
Av. Gran Bretaña 1111,
5030
Casilla,
Valparaíso,
Chile
4
Núcleo Milenio de Formación Planetaria (NPF),
Santiago,
Chile
5
University Observatory, Ludwig Maximilian University,
Scheinerstraße 1,
81679
Munich,
Germany
6
Departamento de Astronomía de Chile, Universidad de Chile,
Santiago,
Chile
7
Max-Planck-Institut für extraterrestriche Physik (MPE),
85748
Garching,
Germany
8
Chinese Academy of Sciences South America Center for Astronomy, National Astronomical Observatories,
CAS,
Beijing,
PR China
Received:
7
August
2017
Accepted:
20
November
2018
Context. Despite the recent discovery of spiral-shaped features in protoplanetary discs in the near-infrared and millimetre wavelengths, there is still an active discussion to understand how they formed. In fact, the spiral waves observed in discs around young stars can be due to different physical mechanisms: planet/companion torques, gravitational perturbations, or illumination effects.
Aims. We study the spirals formed in the gaseous phase by two diametrically opposed shadows cast at fixed disc locations. The shadows are created by an inclined non-precessing disc inside the cavity, which is assumed to be optically thick. In particular, we analyse the effect of these spirals on the dynamics of the dust particles and discuss their detectability in transition discs.
Methods. We performed gaseous hydrodynamical simulations with shadows, then we computed the dust evolution on top of the gaseous distribution, and finally we produced synthetic ALMA observations of the dust emission based on radiative transfer calculations.
Results. Our main finding is that millimetre- to centimetre-sized dust particles are efficiently trapped inside the shadow-triggered spirals. We also observe that particles of various sizes starting at different stellocentric distances are well mixed inside these pressure maxima. This dynamical effect would favour grain growth and affect the resulting composition of planetesimals in the disc. In addition, our radiative transfer calculations show spiral patterns in the disc at 1.6 μm and 1.3 mm. Due to their faint thermal emission (compared to the bright inner regions of the disc) the spirals cannot be detected with ALMA. However, our synthetic observations prove that shadows are observable as dips in the thermal emission.
Key words: protoplanetary disks / hydrodynamics / methods: numerical / radiative transfer / planets and satellites: formation
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.