Issue |
A&A
Volume 621, January 2019
|
|
---|---|---|
Article Number | A30 | |
Number of page(s) | 14 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201833689 | |
Published online | 03 January 2019 |
Late-time observations of the extraordinary Type II supernova iPTF14hls
1
The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, 10691
Stockholm, Sweden
e-mail: jesper@astro.su.se
2
Department of Physics, University of California, Santa Barbara, CA, 93106-9530
USA
3
Las Cumbres Observatory, 6740 Cortona Dr Ste 102, Goleta, CA, 93117-5575
USA
4
The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978
Israel
5
Division of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA, 91125
USA
6
Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA, 91125
USA
7
Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MA, 20771
USA
8
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218
Hawthorn, 3122
VIC, Australia
9
Department of Astronomy, University of California, Berkeley, CA, 94720-3411
USA
10
Miller Institute for Basic Research in Science, University of California, Berkeley, CA, 94720
USA
11
Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot, 76100
Israel
12
Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Browlow Hill, Liverpool, L3 5RF
UK
13
Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208
USA
14
Department of Physics, University of California, 1 Shields Avenue, Davis, CA, 95616-5270
USA
15
Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing, 100084
PR China
Received:
21
June
2018
Accepted:
23
October
2018
Aims. We study iPTF14hls, a luminous and extraordinary long-lived Type II supernova, which lately has attracted much attention and disparate interpretation.
Methods. We have presented new optical photometry that extends the light curves up to more than three years past discovery. We also obtained optical spectroscopy over this period, and furthermore present additional space-based observations using Swift and HST.
Results. After an almost constant luminosity for hundreds of days, the later light curve of iPTF14hls finally fades and then displays a dramatic drop after about 1000 d, but the supernova is still visible at the latest epochs presented. The spectra have finally turned nebular, and our very last optical spectrum likely displays signatures from the deep and dense interior of the explosion. A high-resolution HST image highlights the complex environment of the explosion in this low-luminosity galaxy.
Conclusions. We provide a large number of additional late-time observations of iPTF14hls, which are (and will continue to be) used to assess the many different interpretations for this intriguing object. In particular, the very late (+1000 d) steep decline of the optical light curve is difficult to reconcile with the proposed central engine models. The lack of very strong X-ray emission, and the emergence of intermediate-width emission lines including [S II] that we propose originate from dense, processed material in the core of the supernova ejecta, are also key observational tests for both existing and future models.
Key words: supernovae: general / supernovae: individual: iPTF14hls
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.