Issue |
A&A
Volume 620, December 2018
|
|
---|---|---|
Article Number | A94 | |
Number of page(s) | 18 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201833872 | |
Published online | 04 December 2018 |
Evolution of protoplanetary disks from their taxonomy in scattered light: spirals, rings, cavities, and shadows
1
INAF, Osservatorio Astrofisico di Arcetri,
Largo Enrico Fermi 5,
50125 Firenze, Italy
e-mail: agarufi@arcetri.astro.it
2
Unidad Mixta Internacional Franco-Chilena de Astronomía, CNRS/INSU UMI 3386 and Departamento de Astronomía, Universidad de Chile,
Casilla 36-D,
Santiago, Chile
3
Université Grenoble Alpes, CNRS, IPAG,
38000 Grenoble, France
4
Department of Astronomy/Steward Observatory, The University of Arizona,
933 North Cherry Avenue,
Tucson,
AZ 85721, USA
5
Institute of Astronomy,
Madingley Rd,
Cambridge, CB3 0HA, UK
6
Astronomical Institute Anton Pannekoek, University of Amsterdam,
PO Box 94249,
1090 GE Amsterdam, The Netherlands
7
Max Planck Institute for Astronomy,
Königstuhl 17,
69117 Heidelberg,
Germany
8
LESIA, Observatoire de Paris-Meudon, CNRS, Université Pierre et Marie Curie, Université Paris Didierot,
5 Place Jules Janssen,
92195 Meudon,
France
9
Institute for Particle Physics and Astrophysics, ETH Zurich, Wolfgang-Pauli-Strasse 27,
8093 Zurich, Switzerland
10
Institute for Computational Science, University of Zurich,
Winterthurerstrasse 190,
8057 Zurich, Switzerland
11
European Southern Observatory, Alonso de Córdova 3107, Casilla 19001 Vitacura, Santiago 19, Chile
12
Aix-Marseille Université, CNRS, LAM, Marseille, France
13
CRAL, UMR 5574, CNRS, Université de Lyon, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
Received:
16
July
2018
Accepted:
3
October
2018
Context. Dozens of protoplanetary disks have been imaged in scattered light during the last decade.
Aims. The variety of brightness, extension, and morphology from this census motivates a taxonomical study of protoplanetary disks in polarimetric light to constrain their evolution and establish the current framework of this type of observation.
Methods. We classified 58 disks with available polarimetric observations into six major categories (Ring, Spiral, Giant, Rim, Faint, and Small disks) based on their appearance in scattered light. We re-calculated the stellar and disk properties from the newly available Gaia DR2 and related these properties with the disk categories.
Results. More than half of our sample shows disk substructures. For the remaining sources, the absence of detected features is due to their faintness, their small size, or the disk geometry. Faint disks are typically found around young stars and typically host no cavity. There is a possible dichotomy in the near-infrared (NIR) excess of sources with spiral-disks (high) and ring-disks (low). Like spirals, shadows are associated with a high NIR excess. If we account for the pre-main sequence evolutionary timescale of stars with different mass, spiral arms are likely associated with old disks. We also found a loose, shallow declining trend for the disk dust mass with time.
Conclusions. Protoplanetary disks may form substructures like rings very early in their evolution but their detectability in scattered light is limited to relatively old sources ( ≳5 Myr) where the recurrently detected disk cavities cause the outer disk to be illuminate. The shallow decrease of disk mass with time might be due to a selection effect, where disks observed thus far in scattered light are typically massive, bright transition disks with longer lifetimes than most disks. Our study points toward spirals and shadows being generated by planets of a fraction of a Jupiter mass to a few Jupiter masses in size that leave their (observed) imprint on both the inner disk near the star and the outer disk cavity.
Key words: planet-disk interactions / planets and satellites: formation / protoplanetary disks
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.