Issue |
A&A
Volume 619, November 2018
|
|
---|---|---|
Article Number | A45 | |
Number of page(s) | 18 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201832677 | |
Published online | 09 November 2018 |
Multi-wavelength characterization of the blazar S5 0716+714 during an unprecedented outburst phase⋆
1 ETH Zurich, 8093 Zurich, Switzerland
2 Università di Udine ; INFN Trieste, 33100 Udine, Italy
3 National Institute for Astrophysics (INAF), 00136 Rome, Italy
4 Università di Padova, Italy
5 Technische Universität Dortmund, 44221 Dortmund, Germany
6
Croatian MAGIC Consortium: University of Rijeka, 51000 Rijeka, Croatia
University of Split – FESB, 21000 Split, Croatia
University of Zagreb – FER, 10000 Zagreb Croatia
University of Osijek, 31000 Osijek, Croatia
Rudjer Boskovic Institute, 10000 Zagreb, Croatia
7 Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Salt Lake, Sector-1, Kolkata 700064, India
8 Max-Planck-Institut für Physik, 80805 München, Germany
9 Centro Brasileiro de Pesquisas Físicas (CBPF), 22290-180 URCA, Rio de Janeiro (RJ), Brasil
10 Unidad de Partículas y Cosmología (UPARCOS), Universidad Complutense, 28040 Madrid, Spain
11
Inst. de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
Universidad de La Laguna, Dpto. Astrofísica, 38206 La Laguna, Tenerife, Spain
12 University of Łódź, Department of Astrophysics, 90236 Łódź, Poland
13 Deutsches Elektronen-Synchrotron (DESY), 15738 Zeuthen, Germany
14 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), 08193 Bellaterra (Barcelona), Spain
15 Università di Siena and INFN Pisa, 53100 Siena, Italy
16 Universität Würzburg, 97074 Würzburg, Germany
17 Finnish MAGIC Consortium: Tuorla Observatory (Department of Physics and Astronomy) and Finnish Centre of Astronomy with ESO (FINCA), University of Turku, 20014 Turku, Finland
Astronomy Division, University of Oulu, 90014 Oulu, Finland
18 Departament de Física; CERES-IEEC, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain
19 Universitat de Barcelona, ICC, IEEC-UB, 08028 Barcelona, Spain
20
Japanese MAGIC Consortium: ICRR, The University of Tokyo, 277-8582 Chiba, Japan
Department of Physics, Kyoto University, 606-8502 Kyoto, Japan
Tokai University, 259-1292 Kanagawa, Japan
The University of Tokushima, 770-8502 Tokushima, Japan
21 Inst. for Nucl. Research and Nucl. Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
22 Università di Pisa and INFN Pisa, 56126 Pisa, Italy
23 Humboldt University of Berlin, Institut für Physik, 12489 Berlin, Germany
24 Dipartimento di Fisica, Università di Trieste, 34127 Trieste, Italy
25 Port d’Informació Científica (PIC), 08193 Bellaterra (Barcelona), Spain
26 INAF-Trieste, Dept. of Physics & Astronomy, University of Bologna, Italy
27 INFN, 35131 Padova, Italy
28 ASI Science Data Center and INFN, 06123 Perugia, Italy
29 CEN Bordeaux-Gradignan, 33170 Gradignan, France
30 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
31 Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, 18080 Granada, Spain
32 Max–Planck–Institut für Radioastronomie, Auf dem Hügel, 69, 53121 Bonn, Germany
33 Crimean Astrophysics Observatory, P/O Nauchny 298409, Crimea
34 Astron. Inst., St. Petersburg State University, Russia
35 Harvard-Smithsonian Center for Astrophysics, MA, 02138 Cambridge, USA
36 Metsähovi Radio Observatory, Aalto University, 02540 Kylmälä, Finland
37 Department of Electronics and Nanoengineering, Aalto University, 00076 Aalto, Finland
38 Tuorla Observatory, University of Turku, Väisäläntie 20, 21500 Piikkiö, Finland
39 Department of Physical Science, Hiroshima University, Higashihiroshima 739-8526, Japan
40 Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA
41 Mullard Space Science Lab., UCL, Dorking RH5 6NT, UK
42 Pulkovo Observatory, St.-Petersburg, Russia
43 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
44 Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland
45 Owens Valley Radio Observatory, California Institute of Technology, Pasadena, CA 91125, USA
46 CePIA, Astronomy Department, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
47 Astrophysics Research Institute, Liverpool John Moores University, Brownlow Hill, Liverpool L3 5RF, UK
Received:
20
January
2018
Accepted:
30
June
2018
Context. The BL Lac object S5 0716+714, a highly variable blazar, underwent an impressive outburst in January 2015 (Phase A), followed by minor activity in February (Phase B). The MAGIC observations were triggered by the optical flux observed in Phase A, corresponding to the brightest ever reported state of the source in the R-band.
Aims.The comprehensive dataset collected is investigated in order to shed light on the mechanism of the broadband emission.
Methods. Multi-wavelength light curves have been studied together with the broadband spectral energy distributions (SEDs). The sample includes data from Effelsberg, OVRO, Metsähovi, VLBI, CARMA, IRAM, SMA, Swift-UVOT, KVA, Tuorla, Steward, RINGO3, KANATA, AZT-8+ST7, Perkins, LX-200, Swift-XRT, NuSTAR, Fermi-LAT and MAGIC.
Results. The flaring state of Phase A was detected in all the energy bands, providing for the first time a multi-wavelength sample of simultaneous data from the radio band to the very-high-energy (VHE, E > 100 GeV). In the constructed SED, the Swift-XRT+NuSTAR data constrain the transition between the synchrotron and inverse Compton components very accurately, while the second peak is constrained from 0.1 GeV to 600 GeV by Fermi+MAGIC data. The broadband SED cannot be described with a one-zone synchrotron self-Compton model as it severely underestimates the optical flux in order to reproduce the X-ray to γ-ray data. Instead we use a two-zone model. The electric vector position angle (EVPA) shows an unprecedented fast rotation. An estimation of the redshift of the source by combined high-energy (HE, 0.1 GeV < E < 100 GeV) and VHE data provides a value of z = 0.31 ± 0.02stats ± 0.05sys, confirming the literature value.
Conclusions. The data show the VHE emission originating in the entrance and exit of a superluminal knot in and out of a recollimation shock in the inner jet. A shock–shock interaction in the jet seems responsible for the observed flares and EVPA swing. This scenario is also consistent with the SED modeling.
Key words: BL Lacertae objects: individual: S5 0716+714 / galaxies: active / galaxies: jets / gamma rays: galaxies
The complete data set shown in Figs. 1 and 2, the data points shown in Figs. 8 and 9 and Table A.1 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/619/A45
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.