Issue |
A&A
Volume 618, October 2018
|
|
---|---|---|
Article Number | A97 | |
Number of page(s) | 18 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201731947 | |
Published online | 17 October 2018 |
Chromatic transit light curves of disintegrating rocky planets
1
Leiden Observatory, Leiden University,
Niels Bohrweg 2,
2333
CA Leiden,
The Netherlands
e-mail: arh@strw.leidenuniv.nl
2
Netherlands Institute for Space Research (SRON),
Sorbonnelaan 2,
3584
CA Utrecht,
The Netherlands
3
Institute of Astronomy, University of Cambridge,
Madingley Rd, Cambridge CB3 0HA,
UK
Received:
13
September
2017
Accepted:
3
July
2018
Context. Kepler observations have revealed a class of short-period exoplanets, of which Kepler-1520 b is the prototype, which have comet-like dust tails thought to be the result of small, rocky planets losing mass. The shape and chromaticity of the transits constrain the properties of the dust particles originating from the planet’s surface, offering a unique opportunity to probe the composition and geophysics of rocky exoplanets.
Aims. We aim to approximate the average Kepler long-cadence light curve of Kepler-1520 b and investigate how the optical thickness and transit cross section of a general dust tail can affect the observed wavelength dependence and depth of transit light curves.
Methods. We developed a new 3D model that ejects sublimating particles from the planet surface to build up a dust tail, assuming it to be optically thin, and used 3D radiative transfer computations that fully treat scattering using the distribution of hollow spheres (DHS) method, to generate transit light curves between 0.45 and 2.5 μm.
Results. We show that the transit depth is wavelength independent of optically thick tails, potentially explaining why only some observations indicate a wavelength dependence. From the 3D nature of our simulated tails, we show that their transit cross sections are related to the component of particle ejection velocity perpendicular to the planets orbital plane and use this to derive a minimum ejection velocity of 1.2 km s−1. To fit the average transit depth of Kepler-1520 b of 0.87%, we require a high dust mass-loss rate of 7−80 M⊕ Gyr−1 which implies planet lifetimes that may be inconsistent with the observed sample. Therefore, these mass loss rates should be considered to be upper limits.
Key words: planets and satellites: individual: Kepler-1520 b / methods: numerical
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.