Issue |
A&A
Volume 617, September 2018
|
|
---|---|---|
Article Number | A127 | |
Number of page(s) | 13 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201833488 | |
Published online | 01 October 2018 |
High-redshift quasar selection from the CFHQSIR survey
1
Aix-Marseille Université CNRS, CNES, LAM, Marseille, France
e-mail: sarah.pipien@lam.fr
2
NRC Herzberg, 5071 West Saanich Rd, Victoria, BC V9E 2E7, Canada
3
CEA/IRFU/SAp, Laboratoire AIM Paris-Saclay, CNRS/INSU, Université Paris Diderot, Observatoire de Paris, PSL Research University, 91191 Gif-sur-Yvette Cedex, France
4
Institut d’Astrophysique de Paris, 98bis Boulevard Arago, 75014 Paris, France
Received:
24
May
2018
Accepted:
25
August
2018
Being observed only one billion years after the Big Bang, z ∼ 7 quasars are a unique opportunity for exploring the early Universe. However, only two z ∼ 7 quasars have been discovered in near-infrared surveys: the quasars ULAS J1120+0641 and ULAS J1342+0928 at z = 7.09 and z = 7.54, respectively. The rarity of these distant objects, combined with the difficulty of distinguishing them from the much more numerous population of Galactic low-mass stars, requires using efficient selection procedures. The Canada-France High-z Quasar Survey in the Near Infrared (CFHQSIR) has been carried out to search for z ∼ 7 quasars using near-infrared and optical imaging from the Canada-France Hawaii Telescope (CFHT). Our data consist of ∼130 deg2 of Wide-field Infrared Camera (WIRCam) Y-band images up to a 5σ limit of YAB ∼ 22.4 distributed over the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) Wide fields. After follow-up observations in J band, a first photometric selection based on simple colour criteria led us to identify 36 sources with measured high-redshift quasar colours. However, we expect to detect only ∼2 quasars in the redshift range 6.8 < z < 7.5 down to a rest-frame absolute magnitude of M1450 = −24.6. With the motivation of ranking our high-redshift quasar candidates in the best possible way, we developed an advanced classification method based on Bayesian formalism in which we model the high-redshift quasars and low-mass star populations. The model includes the colour diversity of the two populations and the variation in space density of the low-mass stars with Galactic latitude, and it is combined with our observational data. For each candidate, we compute the probability of being a high-redshift quasar rather than a low-mass star. This results in a refined list of the most promising candidates. Our Bayesian selection procedure has proven to be a powerful technique for identifying the best candidates of any photometrically selected sample of objects, and it is easily extendable to other surveys.
Key words: cosmology: observations / galaxies: active / quasars: general / galaxies: photometry / infrared: general / methods: statistical
© ESO 2018
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.