Issue |
A&A
Volume 617, September 2018
|
|
---|---|---|
Article Number | A132 | |
Number of page(s) | 21 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201833317 | |
Published online | 01 October 2018 |
Sulphur-bearing molecules in AGB stars
II. Abundances and distributions of CS and SiS★
1
Department of Physics and Astronomy, Institute of Astronomy,
KU Leuven,
Celestijnenlaan 200D, 3001 Leuven, Belgium
e-mail: taissa.danilovich@kuleuven.be
2
Department of Physics and Astronomy, Uppsala University,
Box 516,
75120
Uppsala, Sweden
3
Department of Space,
Earth and Environment, Chalmers University of Technology,
Onsala Space Observatory,
43992 Onsala, Sweden
Received:
28
April
2018
Accepted:
7
July
2018
Context. Sulphur has long been known to form different molecules depending on the chemical composition of its environment. More recently, the sulphur-bearing molecules SO and H2S have been shown to behave differently in oxygen-rich asymptotic giant branch (AGB) circumstellar envelopes of different densities.
Aims. By surveying a diverse sample of AGB stars for CS and SiS emission, we aim to determine in which environments these sulphur-bearing molecules most readily occur. We include sources with a range of mass-loss rates and carbon-rich, oxygen-rich, and mixed S-type chemistries. Where these molecules are detected, we aim to determine their CS and SiS abundances.
Methods. We surveyed 20 AGB stars of different chemical types using the APEX telescope, and combined this with an IRAM 30 m and APEX survey of CS and SiS emission towards over 30 S-type stars. For those stars with detections, we performed radiative transfer modelling to determine abundances and abundance distributions.
Results. We detect CS towards all the surveyed carbon stars, some S-type stars, and the highest mass-loss rate oxygen-rich stars, (Ṁ ≥ 5 × 10−6 M⊙ yr−1). SiS is detected towards the highest mass-loss rate sources of all chemical types (Ṁ ≥ 8 × 10−7 M⊙ yr−1). We find CS peak fractional abundances ranging from ~4 × 10−7 to ~2 × 10−5 for the carbon stars, from ~3 × 10−8 to ~1 × 10−7 for the oxygen-rich stars, and from ~1 × 10−7 to ~8 × 10−6 for the S-type stars. We find SiS peak fractional abundances ranging from ~9 × 10−6 to ~2 × 10−5 for the carbon stars, from ~5 × 10−7 to ~2 × 10−6 for the oxygen-rich stars, and from ~2 × 10−7 to ~2 × 10−6 for the S-type stars.
Conclusions. Overall, we find that wind density plays an important role in determining the chemical composition of AGB circumstellar envelopes. It is seen that for oxygen-rich AGB stars both CS and SiS are detected only in the highest density circumstellar envelopes and their abundances are generally lower than for carbon-rich AGB stars by around an order of magnitude. For carbon-rich and S-type stars SiS was also only detected in the highest density circumstellar envelopes, while CS was detected consistently in all surveyed carbon stars and sporadically among the S-type stars.
Key words: stars: AGB and post-AGB / circumstellar matter / stars: mass-loss / stars: evolution
The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/617/A132
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.