Issue |
A&A
Volume 616, August 2018
|
|
---|---|---|
Article Number | A33 | |
Number of page(s) | 15 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/201833111 | |
Published online | 13 August 2018 |
Precise radial velocities of giant stars
X. Bayesian stellar parameters and evolutionary stages for 372 giant stars from the Lick planet search⋆
Landessternwarte, Zentrum für Astronomie der Universität Heidelberg, Königstuhl 12, 69117 Heidelberg, Germany
e-mail: sstock@lsw.uni-heidelberg.de
Received:
27
March
2018
Accepted:
4
May
2018
Context. The determination of accurate stellar parameters of giant stars is essential for our understanding of such stars in general and as exoplanet host stars in particular. Precise stellar masses are vital for determining the lower mass limit of potential substellar companions with the radial velocity method, but also for dynamical modeling of multiplanetary systems and the analysis of planetary evolution.
Aims. Our goal is to determine stellar parameters, including mass, radius, age, surface gravity, effective temperature and luminosity, for the sample of giants observed by the Lick planet search. Furthermore, we want to derive the probability of these stars being on the horizontal branch (HB) or red giant branch (RGB), respectively.
Methods. We compare spectroscopic, photometric and astrometric observables to grids of stellar evolutionary models using Bayesian inference.
Results. We provide tables of stellar parameters, probabilities for the current post-main sequence evolutionary stage, and probability density functions for 372 giants from the Lick planet search. We find that 81% of the stars in our sample are more probably on the HB. In particular, this is the case for 15 of the 16 planet host stars in the sample. We tested the reliability of our methodology by comparing our stellar parameters to literature values and find very good agreement. Furthermore, we created a small test sample of 26 giants with available asteroseismic masses and evolutionary stages and compared these to our estimates. The mean difference of the stellar masses for the 24 stars with the same evolutionary stages by both methods is only ΔM = 〈Mtrk. − MAst.〉 = 0.01 ± 0.20 M⊙.
Conclusions. We do not find any evidence for large systematic differences between our results and estimates of stellar parameters based on other methods. In particular we find no significant systematic offset between stellar masses provided by asteroseismology to our Bayesian estimates based on evolutionary models.
Key words: stars: fundamental parameters / stars: late-type / stars: evolution / Hertzsprung-Russell and C-M diagrams / planetary systems / methods: statistical
The catalog of stellar parameters and the data of PDFs of the RGB and HB solutions are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/616/A33
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.