Issue |
A&A
Volume 616, August 2018
|
|
---|---|---|
Article Number | A102 | |
Number of page(s) | 12 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201832579 | |
Published online | 27 August 2018 |
Numerical estimation of wavefront error breakdown in adaptive optics
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité,
5 place Jules Janssen,
92195
Meudon, France
e-mail: florian.ferreira@obspm.fr
Received:
3
January
2018
Accepted:
24
April
2018
Aims. Adaptive optics (AO) system performance is improved using post-processing techniques, such as point spread function (PSF) deconvolution. The PSF estimation involves characterization of the different wavefront (WF) error sources in the AO system. We propose a numerical error breakdown estimation tool that allows studying AO error source behavior such as their correlations. We also propose a new analytical model for anisoplanatism and bandwidth errors that were validated with the error breakdown estimation tool. This model is the first step for a complete AO residual error model that is expressed in deformable mirror space, leading to practical usage such as PSF reconstruction or turbulent parameters identification.
Methods. We have developed in the computing platform for adaptive optics systems (COMPASS) code, which is an end-to-end simulation code using graphics processing units (GPU) acceleration, an estimation tool that provides a comprehensive error breakdown by the outputs of a single simulation run. We derive the various contributors from the end-to-end simulator at each iteration step: this method provides temporal buffers of each contributor. Then, we use this tool to validate a new model of anisoplanatism and bandwidth errors including their correlation. This model is based on a statistical approach that computes the error covariance matrices using structure functions.
Results. On a SPHERE-like system, the comparison between a PSF computed from the error breakdown with a PSF obtained from classical end-to-end simulation shows that the statistics convergence limits converge very well, with a sub-percent difference in terms of Strehl ratio and ensquared energy at 5λ/D separation. A correlation analysis shows significant correlations between some contributors, especially WF measurement deviation error and bandwidth error due to centroid gain, and the well-known correlation between bandwidth and anisoplanatism errors is also retrieved. The model we propose for the two latter errors shows an SR and EE difference of about one percent compared to the end-to-end simulation, even if some approximations exist.
Key words: instrumentation: adaptive optics / methods: numerical
© ESO 2018
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.