Issue |
A&A
Volume 616, August 2018
|
|
---|---|---|
Article Number | A127 | |
Number of page(s) | 14 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201732268 | |
Published online | 04 September 2018 |
The role of molecular gas in the nuclear regions of IRAS 00183-7111
ALMA and X-ray investigations of an ultraluminous infrared galaxy
1
Dipartimento di Fisica e Astronomia, Alma Mater Studiorum, Università degli Studi di Bologna, via Gobetti 93/2, 40129 Bologna, Italy
e-mail i.ruffa@ira.inaf.it
2
INAF - Istituto di Radioastronomia, via P. Gobetti 101, 40129 Bologna, Italy
3
INAF - Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via Gobetti 93/3, 40129 Bologna, Italy
4
Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (IEEC-UB), Martí i Franquès, 1, 08028 Barcelona, Spain
5
ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
Received:
9
November
2017
Accepted:
2
May
2018
Aims. We present a multi-frequency study of the ultraluminous infrared galaxy (ULIRG) IRAS 00183-7111 (z = 0.327), selected from the Spoon diagnostic diagram as a highly obscured active galactic nucleus (AGN) candidate. ALMA millimetre and X-ray observations are used; the main aim is to verify at what level the molecular gas, traced by the CO, may be responsible for the obscuration observed at X-ray energies. Theory and observations both suggest that galaxy-scale absorption may play a role in the AGN obscuration at intermediate (i.e. Compton-thin) column densities.
Methods. We calibrated and analysed ALMA archival Cycle 0 data in two bands (Bands 3 and 6). The X-ray properties of IRAS 00183-7111 were studied by reducing and analysing separately archival Chandra and XMM-Newton data; recently acquired NuSTAR spectra were first examined individually and then added to the Chandra and XMM spectra for the broad-band (0.5 − 24 keV, observed frame) analysis.
Results. We derived a molecular gas column density of (8.0 ± 0.9) × 1021 cm−2 from the ALMA CO(1−0) detection, while the best-fit column density of cold gas obtained from X-ray spectral fitting is 6.8−1.5+2.1×1022 cm−. The two quantities suggest that the molecular gas may contribute only a fraction of the AGN obscuration; however, the link between them is not straightforward. The nuclear regions of IRAS 00183-7111 are likely stratified into different layers of matter: one inner and highly ionized by the strong radiation field of the AGN (as inferred from the high-ionization iron line found in the X-ray spectra), and one outer and colder, extending more than 5 kpc from the nucleus (as traced by the molecular gas observed with ALMA). The molecular gas regions also give rise to a vigorous starburst with SFR ~260 ± 28 M⊙ yr−1. The complexity of this nuclear environment makes it difficult to identify the origin of the AGN obscuration given the quality of the data currently available. Higher resolution observations in the millimetre regime are needed to deeply investigate this issue.
Key words: molecular data / galaxies: active / infrared: galaxies
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.