Issue |
A&A
Volume 615, July 2018
|
|
---|---|---|
Article Number | A41 | |
Number of page(s) | 16 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201832779 | |
Published online | 13 July 2018 |
Numerical modeling of lander interaction with a low-gravity asteroid regolith surface
Application to MASCOT on board Hayabusa2
1
Lagrange Laboratory, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS,
CS 34229,
06304
Nice Cedex 4,
France
e-mail: fthuille@oca.eu
2
Department of Earth and Planetary Sciences, Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge,
MA
02139,
USA
3
Department of Astronomy, University of Maryland,
College Park,
MD
20742,
USA
4
Institute for Space and Astronautical Studies, Japanese Aerospace eXploration Agency,
Sagamihara,
Kanagawa Prefecture
252-5210,
Japan
5
School of Aerospace Engineering, Tsinghua University,
Beijing
100084,
PR China
6
DLR German Aerospace Center, Micro-Gravity User Support Center,
51147
Cologne,
Germany
7
Department of Earth and Planetary Science, University of Tokyo,
7-3-1 Hongo,
Bunkyo-ku,
Tokyo
113-0033,
Japan
8
Research Center for the Early Universe, University of Tokyo,
7-3-1 Hongo,
Bunkyo-ku, Tokyo
113-0033,
Japan
Received:
6
February
2018
Accepted:
6
April
2018
Context. Landing on the surface of small bodies is particularly challenging, as the physical properties of the surface material are not well known and the mechanical response of this material in a low-gravity environment is not well understood.
Aims. In order to improve our understanding of low-speed impact processes on granular media and their outcome in low-gravity environments, we consider the landing of the package MASCOT, to be released by the JAXA asteroid sample return mission Hayabusa2 on (162173) Ryugu in October 2018. Beyond addressing the theoretical aspects of the mechanical response of granular media in low gravity, this study also supports both engineering and scientific teams of Hayabusa2 in the search for the lander and in the determination of Ryugu’s surface properties.
Methods. A campaign of hundreds of numerical simulations using the soft-sphere discrete element method implemented in the N-body code pkdgrav were performed to study the interaction between the lander and the low-gravity surface of the asteroid made of a granular medium representing the regolith. Assuming a broad range of regolith properties, and the lander’s trajectory and motion, we analyzed the outcomes of the landing (distance traveled by the lander, penetration depth, and shape of the traces left in the regolith surface) to determine the influence of the many parameters defining the properties of MASCOT and of the grains, and the ingoing motion of the lander.
Results. We identify well-marked trends for the fate of the lander and the traces left in the granular material. Distances traveled by the lander are greater and penetrations are shallower for gravel-like media than for less frictional material. A similar trend is found for grazing impacts as opposed to vertical ones. Different regolith properties also generate different traces on the ground after the impact.
Key words: minor planets, asteroids: individual: (162173) Ryugu / methods: numerical
© ESO 2018
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.