Issue |
A&A
Volume 615, July 2018
|
|
---|---|---|
Article Number | A129 | |
Number of page(s) | 20 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201832611 | |
Published online | 27 July 2018 |
Structure of photodissociation fronts in star-forming regions revealed by Herschel⋆ observations of high-J CO emission lines
1
IRAP, Université de Toulouse, CNRS, UPS, CNES, 9 Av. colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
e-mail: christine.joblin@irap.omp.eu
2
Instituto de Física Fundamental (CSIC), Calle Serrano 121-123, 28006 Madrid, Spain
3
LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités UPMC Univ., Paris 06, 92190 Meudon, France
4
Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, 13388 Marseille, France
5
Université Paris-Diderot, Paris, France
6
Observatorio Astronómico Nacional, Apdo. 112, 28803 Alcalá de Henares, Madrid, Spain
7
Institut d’Astrophysique Spatiale (IAS), Université Paris Sud & CNRS, 91405 Orsay, France
8
European Space Astronomy Centre, ESA, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain
9
I. Physikalisches Institut der Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany
10
Institut Utinam, CNRS UMR 6213, OSU THETA, Université de Franche-Comté, 41 bis avenue de l’Observatoire, 25000 Besançon, France
11
Department of Astronomy, University of Michigan, 311 West Hall 1085 S. University Avenue, Ann Arbor, MI 48109, USA
Received:
9
January
2018
Accepted:
10
April
2018
Context. In bright photodissociation regions (PDR) associated with massive star formation, the presence of dense “clumps” that are immersed in a less dense interclump medium is often proposed to explain the difficulty of models to account for the observed gas emission in high-excitation lines.
Aims. We aim to present a comprehensive view of the modelling of the CO rotational ladder in PDRs, including the high-J lines that trace warm molecular gas at PDR interfaces.
Methods. We observed the 12CO and 13CO ladders in two prototypical PDRs, the Orion Bar and NGC 7023 NW using the instruments onboard Herschel. We also considered line emission from key species in the gas cooling of PDRs (C+, O, and H2) and other tracers of PDR edges such as OH and CH+. All the intensities are collected from Herschel observations, the literature and the Spitzer archive and were analysed using the Meudon PDR code.
Results. A grid of models was run to explore the parameter space of only two parameters: thermal gas pressure and a global scaling factor that corrects for approximations in the assumed geometry. We conclude that the emission in the high-J CO lines, which were observed up to Jup = 23 in the Orion Bar (Jup = 19 in NGC 7023), can only originate from small structures with typical thicknesses of a few 10−3 pc and at high thermal pressures (Pth ~ 108 K cm−3).
Conclusions. Compiling data from the literature, we find that the gas thermal pressure increases with the intensity of the UV radiation field given by G0, following a trend in line with recent simulations of the photoevaporation of illuminated edges of molecular clouds. This relation can help to rationalise the analysis of high-J CO emission in massive star formation and provides an observational constraint for models which study stellar feedback on molecular clouds.
Key words: photon-dominated region / ISM: individual objects: Orion Bar / ISM: individual objects: NGC 7023 / ISM: lines and bands / submillimeter: ISM / molecular processes
© ESO 2018
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.