Issue |
A&A
Volume 613, May 2018
|
|
---|---|---|
Article Number | A36 | |
Number of page(s) | 14 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/201732112 | |
Published online | 28 May 2018 |
Exposed bright features on the comet 67P/Churyumov–Gerasimenko: distribution and evolution
1
LESIA, Observatoire de Paris, PSL Research University, CNRS, Univ. Paris Diderot, Sorbonne Paris Cité, UPMC Univ. Paris 06, Sorbonne Universités,
5 place Jules Janssen,
92195
Meudon, France
e-mail: prasanna.deshapriya@obspm.fr
2
Max-Planck-Institut für Sonnensystemforschung,
Justus-von-Liebig-Weg 3,
37077
Göttingen, Germany
3
INAF-OAPD, Astronomical Observatory of Padova,
Vicolo dell’Osservatorio 5,
35122
Padova, Italy
4
NASA Ames Research Center,
Mountain View,
CA
94035, USA
5
Institut für Planetenforschung, DLR,
Rutherfordstrasse 2,
12489
Berlin, Germany
6
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova,
Vic. Osservatorio 3,
35122
Padova, Italy
7
Laboratoire d’Astrophysique de Marseille UMR 7326, CNRS, Aix-Marseille Université,
13388
Marseille Cedex 13, France
8
Centro de Astrobiología, CSIC-INTA,
28850
Torrejón de Ardoz,
Madrid, Spain
9
International Space Science Institute,
Hallerstrasse 6,
3012
Bern, Switzerland
10
Research and Scientific Support Department, European Space Agency,
2201
Noordwijk, The Netherlands
11
Department of Physics and Astronomy, Uppsala University,
75120
Uppsala, Sweden
12
Polish Academy of Sciences, Space Research Center,
Bartycka 18A,
00716
Warszawa, Poland
13
LATMOS, CNRS/UVSQ/IPSL,
11 Boulevard d’Alembert,
78280
Guyancourt, France
14
Department of Astronomy, University of Maryland,
College Park,
MD
20742-2421, USA
15
CNR–IFN UOS Padova LUXOR,
Via Trasea 7,
35131
Padova, Italy
16
NASA Jet Propulsion Laboratory,
4800 Oak Grove Drive,
Pasadena,
CA
91109, USA
17
Dipartimento di Ingegneria Meccanica, Università di Padova,
Via Venezia 1,
35131
Padova, Italy
18
UNITN, Universitá di Trento,
Via Mesiano 77,
38100
Trento, Italy
19
INAF – Osservatorio Astronomico di Trieste,
Via Tiepolo 11,
34143
Trieste, Italy
20
Instituto de Astrofísica de Andalucía – CSIC,
18080
Granada, Spain
21
Institute for Space Science, National Central University,
32054
Chung-Li, Taiwan
22
Institut für Geophysik und Extraterrestrisch Physik,
TU Braunschweig,
38106
Braunschweig, Germany
23
ESA/ESAC,
PO Box 78,
28691
Villanueva de la Cañada, Spain
24
Centro di Ateneo di Studi e Attività Spaziali “Giuseppe Colombo” (CISAS), Università di Padova,
Via Venezia 15,
35131
Padova, Italy
25
Dipartimento di Ingegneria dell’Informazione, Università di Padova,
Via Gradenigo 6/B,
35131
Padova, Italy
26
Physikalisches Institut,
Sidlerstrasse 5, Universität Bern,
3012
Bern, Switzerland
Received:
17
October
2017
Accepted:
28
December
2017
Context. Since its arrival at the comet 67P/Churyumov–Gerasimenko in August 2014, the Rosetta spacecraft followed the comet as it went past the perihelion and beyond until September 2016. During this time there were many scientific instruments operating on board Rosetta to study the comet and its evolution in unprecedented detail. In this context, our study focusses on the distribution and evolution of exposed bright features that have been observed by OSIRIS, which is the scientific imaging instrument aboard Rosetta.
Aims. We envisage investigating various morphologies of exposed bright features and the mechanisms that triggered their appearance.
Methods. We co-registered multi-filter observations of OSIRIS images that are available in reflectance. The Lommel–Seeliger disk function was used to correct for the illumination conditions and the resulting colour cubes were used to perform spectrophotometric analyses on regions of interest.
Results. We present a catalogue of 57 exposed bright features observed on the nucleus of the comet, all of which are attributed to the presence of H2O ice on the comet. Furthermore, we categorise these patches under four different morphologies and present geometric albedos for each category.
Conclusions. Although the nucleus of 67P/Churyumov–Gerasimenko appears to be dark in general, there are localised H2O ice sources on the comet. Cometary activity escalates towards the perihelion passage and reveals such volatile ices. We propose that isolated H2O ice patches found in smooth terrains in regions, such as Imhotep, Bes, and Hapi, result from frost as an aftermath of the cessation of the diurnal water cycle on the comet as it recedes from perihelion. Upon the comet’s return to perihelion, such patches are revealed when sublimation-driven erosion removes the thin dust layers that got deposited earlier. More powerful activity sources such as cometary outbursts are capable of revealing much fresher, less contaminated H2O ice that is preserved with consolidated cometary material, as observed on exposed patches resting on boulders. This is corroborated by our albedo calculations that attribute higher albedos for bright features with formations related to outbursts.
Key words: comets: individual: 67P/Churyumov–Gerasimenko / techniques: photometric / methods: data analysis
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.