Issue |
A&A
Volume 613, May 2018
|
|
---|---|---|
Article Number | A71 | |
Number of page(s) | 13 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/201731961 | |
Published online | 01 June 2018 |
Supervised detection of exoplanets in high-contrast imaging sequences
1
STAR Institute, Université de Liège,
Allée du Six Août 19C,
4000
Liège, Belgium
2
Université Grenoble Alpes, IPAG,
38000
Grenoble, France
3
Montefiore Institute, Université de Liège,
4000
Liège, Belgium
Received:
17
September
2017
Accepted:
12
December
2017
Context. Post-processing algorithms play a key role in pushing the detection limits of high-contrast imaging (HCI) instruments. State-of-the-art image processing approaches for HCI enable the production of science-ready images relying on unsupervised learning techniques, such as low-rank approximations, for generating a model point spread function (PSF) and subtracting the residual starlight and speckle noise.
Aims. In order to maximize the detection rate of HCI instruments and survey campaigns, advanced algorithms with higher sensitivities to faint companions are needed, especially for the speckle-dominated innermost region of the images.
Methods. We propose a reformulation of the exoplanet detection task (for ADI sequences) that builds on well-established machine learning techniques to take HCI post-processing from an unsupervised to a supervised learning context. In this new framework, we present algorithmic solutions using two different discriminative models: SODIRF (random forests) and SODINN (neural networks). We test these algorithms on real ADI datasets from VLT/NACO and VLT/SPHERE HCI instruments. We then assess their performances by injecting fake companions and using receiver operating characteristic analysis. This is done in comparison with state-of-the-art ADI algorithms, such as ADI principal component analysis (ADI-PCA).
Results. This study shows the improved sensitivity versus specificity trade-off of the proposed supervised detection approach. At the diffraction limit, SODINN improves the true positive rate by a factor ranging from ~2 to ~10 (depending on the dataset and angular separation) with respect to ADI-PCA when working at the same false-positive level.
Conclusions. The proposed supervised detection framework outperforms state-of-the-art techniques in the task of discriminating planet signal from speckles. In addition, it offers the possibility of re-processing existing HCI databases to maximize their scientific return and potentially improve the demographics of directly imaged exoplanets.
Key words: methods: data analysis / techniques: high angular resolution / techniques: imaging spectroscopy / planetary systems / planets and satellites: detection
© ESO 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.